• Title/Summary/Keyword: Full-Vehicle

Search Result 617, Processing Time 0.029 seconds

Design of a Full-range Adaptive Cruise Control Algorithm with Collision Avoidance (전구간 주행 및 충돌회피 제어 알고리즘 설계)

  • Moon, Seung-Wuk;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.849-854
    • /
    • 2007
  • This paper describes design and tuning of a full-range Adaptive Cruise Control (ACC) with collision avoidance. The control scheme is designed to control the vehicle so that it would feel natural to the human driver and passengers during normal safe driving situations and to avoid rear-end collision in vehicle following situations. In this study, driving situations are determined using a non-dimensional warning index and time-to-collision (TTC). A confusion matrix method based on natural driving data sets was used to tune control parameters in the proposed ACC System. An ECU-Brake Hardware-in-the-loop Simulation (HiLS) was developed and used for an evaluation of ACC System. The ECU-Brake HiLS results for alternative driving situation are compared to manual driving data measured on actual traffic way. The ACC/CA control logic implemented in an ECU was tested using the ECU-Brake HiLS in a real vehicle environment.

  • PDF

Dynamic analysis of vehicle system using numerical method (수치적 방법에 의한 승용차 동적해석)

  • 이종원;박윤식;조영호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.45-55
    • /
    • 1983
  • This paper discussed about Application Technique of Numerical Methods for large structure. The dynamic behaviours of a vehicle were investigated through finite element modelling. After dividing a vehicle body into three substructures, Basic Mass System was composed of 60 flexual modes which was obtained from the dynamic characteristics of each substructure using Modal Synthesis Method. Engine, transmission and rear axle, etc. were added to Basic Mass Model, consequently Full Mass System was constructed by 72 degree of freedoms. Full Mass System was analyzed over the frequency range 0.5-50.0 Hz under the loading conditions which were Stationary Gaussian Random Process. Results and discussions provided the guidelines to eliminate resonances among the parts and to improve the Ride Quality. The Absorbed Power was used as a standard to determine the Ride Quality. The RMS value of driver's vertical acceleration was obtained 0.423g from the basic model and 0.415g from the modified model.

  • PDF

Modelling and Analysis for Sharing of Full Electric Vehicles in Small-sized Cities (소규모 도시를 위한 전전기 자동차 세어링 서비스 시스템 모델링 및 분석 연구)

  • Jin, Young-Goun;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1857-1862
    • /
    • 2012
  • It is very difficult to construct and manager public transit, like subway, in small city. In this paper, we suggest full electric vehicle sharing service framework as a public transit system in small city. The suggested system will reduce environment pollution and increase resource usage efficiency. The simulation result shows that the suggested electric vehicle sharing system can reduce traffic congestion and lower city road stress.

Sensitivity Analysis of Transfer Mechanism to Brake Judder (브레이크 저더에 대한 전달계 민감도 해석)

  • Sim, Kyung-Seok;Park, Tae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.401-406
    • /
    • 2011
  • The abnormal vibration from the BTV(Brake Torque Variation) and DTV(Disc Thickness Variation) is transferred to the suspension and steering system during braking. In this paper, judder simulation is carried out using multi-body dynamic analysis program to analyze the relation of the judder and transfer mechanism which is composed of the suspension and steering system. In order to analyze the brake judder transfer system, the full vehicle model was composed with rigid body, non-linear bushing, non-linear constraints and joints. Full vehicle model analysis was compared by actual vehicle judder test and sensitivity analysis of the suspension system is carried out.

  • PDF

An Experimental Study on Validation of Nonlinear Critical Speed (비선형 임계속도 검증을 위한 실험적 연구)

  • 정우진;김성원
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • This paper addresses the experimental study on the nonlinear critical speed and the validity of simple prediction formulation. The experiment on nonlinear critical speed is carried out using roller rigs, which has been impossible on track because of a possibility of an accident. In addition, experiment for a bogie is performed to check the difference in modeling a full railway vehicle and a bogie. It is found that nonlinear critical speed proves to be an inherent phenomenon of a railway vehicle itself and the difference of test results between a full railway vehicle and a bogie is comparatively negligible. Finally. the accuracy of simple prediction formulation for outbreak velocity and response frequency in hunting is investigated.

  • PDF

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가 장치 제어를 위한 중복 분산형 견실 고유구조지정 제어기 설계)

  • 정용하;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.217-217
    • /
    • 2000
  • A decentralized robust EA(eigensoucture assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, a robust eigenstructure assignment controller can be obtained by using optimization approach. The performance of the decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

Design of the Full-Scale Fire Safety Evaluation Facility for Railroad Vehicle Fire (철도차량 실대형 화재안전 성능평가 장치 설계)

  • Yoo, Yong-Ho;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.222-225
    • /
    • 2008
  • To prove a lot of technical difficulties related to the safety management of a railroad fire effectively, we design for the full-scale fire test facility of the railroad vehicle. It will be consist of major 3 part - duct system with smoke cleaning system, measuring section and gas analysis system. The CFD simulation was also carried out to design of the hood and duct system optimization. The results will be help for basic research of the railroad fire safety.

  • PDF

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

Optimum Design of Front Toe Angle Using Design of Experiment and Dynamic Simulation for Evaluation of Handling Performances (실험계획법을 이용한 전륜 토우각의 최적설계 및 조종 안정성능 평가 시뮬레이션)

  • 서권희;민한기;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.120-128
    • /
    • 2000
  • At the initial design stage of a new vehicle, the chassis layout has the most important influence on the overall vehicle performance. Most chassis designers have achieved the target performances by trial and error method as well as individual knowhow. Accordingly, a general procedure for determining the optimum location of suspension hard points with respect to the kinematic characteristics needs to be developed. In this paper, a method to optimize the toe angle in the double wishbone type front suspension of the four-wheel-drive vehicle is presented using the design of experiment, multibody dynamic simulation, and optimum design program. The handling performances of two full vehicle models having the initial and optimized toe angle are compared through the single lane change simulation. The sensitive design variables with respect to the kinematic characteristics are selected through the experimental design sensitivity analysis using the perturbation method. An object function is defined in terms of the toe angle among those kinematic characteristics. By the design of experiment and regression analysis, the regression model function of toe angle is obtained. The design variables which make the toe angle optimized ae extracted using the optimum design program DOT. The single lane change simulation and test of the full vehicle model are carried out to survey the handling performances of vehicle with toe angle optimized. The results of the single lane change simulation show that the optimized vehicle has the more improved understeer tendency than the initial vehicle.

  • PDF

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.