• Title/Summary/Keyword: Full-Bridge DC/DC Converter

Search Result 311, Processing Time 0.03 seconds

PWM Converter with Unity Power Factor for UPS systems (고역률 PWM CONVERTER를 적용한 UPS)

  • Lee, Woo-Cheol;Suh, In-Young;Lee, Bum-Hee;Seo, Dong-Hwi;Kueon, Seong-Gon;Kim, Sung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.753-755
    • /
    • 1993
  • Full Bridge Diode Rectification and Phase Controlled SCR Rectification are the most widely used methods of power conversion($AC{\rightarrow}DC$) in Power Electronic products such as UPS systems. But using these types of converters can lead to the following problems. First, they generate harmonics on the AC input side, which can cause interference in other equipment connected to the same commercial power line. Second, they deteriorate the power factor so that the input power capacity or the equipment becomes larger than the actual rated output capacity. As a means to overcome these problems an IGBT type PWM Converter, which applies a current control algorithm, is proposed. In this paper the enhancement of the converter performance is shown through simulation.

  • PDF

Comparative study of proportional-integral, proportional-resonant, and predictive deadbeat controllers in a PV PCS (태양광 전력변환장치의 PI, PR 및 PD 제어기 비교 연구)

  • Le, Dinh-Vuong;Kim, Chang-Soon;Hwang, Chul-Sang;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1050-1051
    • /
    • 2015
  • In industry, there are several different controllers which can be implemented for power conditioning systems (PCS) such as proportional-resonant (PR), predictive deadbeat (PD), or proportional-integral (PI) controller. But there are not any comparison studies about these controllers. To investigate the differences between the three types of the controllers, this paper presents a comparative study of PR, PI, and PD controllers in a photovoltaic (PV) PCS. These controllers are designed mathematically and simulated for the comparative analysis. The PI controller is designed in the rotating reference (dq) frame. The PR and PD controllers are implemented in the natural (abc) reference frame. The PCS is composed of a DC-DC boost converter and a full bridge inverter. The filter of the PCS is an LCL filter including a passive damping resistor. The parameters of PCS are 3 kW, 25 kHz switching frequency and 220 V-60 Hz grid voltage. The comparison results between these controllers for the grid-connected PCS are clearly shown. The simulation results demonstrate the detailed characteristics of each controller for the PV PCS in order to choose the controller for individual target properly.

  • PDF

A Resonance Inverter Power System for Improving Plasma Sterilization Effect (플라즈마 살균효과 향상을 위한 공진형 인버터 전원시스템)

  • Suh, Ki-Young;Mun, Sang-Pil;Jung, Jang-Gun;Kim, Ju-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.135-141
    • /
    • 2004
  • A sterilizer equipment by using electrical energy has metrits that no process of chemical and no second environmental pollution, Also, the power conversion circuit for sterilizer equipment has mertis that are reducing switching loss for soft switching topology by using zero current and zero voltage switching, and miniaturizing size of equipment. The proposed power device which has lower output current than other devices is possible to be compacted in it's size reduced it's price if the proposed power device is used for power system. Therefore, it is adapted for both less power consumption and sudden power conversion

PEBB Based Bi-directional Rapid Charging System for EV Traction Battery

  • Kang, Taewon;Chae, Beomseok;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.323-324
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Modeling and Filter Design through Analysis of Conducted EMI in Switching Power Converters

  • Vimala, R.;Baskaran, K.;Aravind Britto, K.R.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.632-642
    • /
    • 2012
  • This paper presents a filter analysis of conducted Electro-Magnetic Interference (EMI) in switching power converters (SPC) based on noise impedances. The EMI characteristics of SPC can be analytically deduced from a circuit theoretical viewpoint. The analytical noise model is investigated to get a full understanding of the EMI mechanism. It is shown that with suitable and justified model, filters pertinent to EMI noise is investigated. The EMI noise is identified by time domain measurements associated with an isolated half-bridge ac-dc converter. Practical filters like LC filter, ${\pi}$ filter and complete EMI filters are investigated. The proposed analysis and results can provide a guideline for improving the effectiveness of filtering schemes in SPC. Experimental results are also included to verify the validity of the proposed method. The results obtained satisfy the Federal Communications Commission (FCC) class A and class B regulations.

A Phase-Shift Full-Bridge Converter with Novel Single-Capacitor Clamping Circuit for Electric Vehicle Charger (단일 커패시터 클램핑 회로가 적용된 전기자동차 충전기용 위상천이 풀브릿지 컨버터)

  • Lee, Min-Su;Lim, Cheon-Yong;Kim, Keon-Woo;Park, Moo-Hyun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.17-19
    • /
    • 2019
  • 본 논문에서는 전기자동차(EV) 충전기용 위상천이 풀브리지(PSFB) 컨버터의 정류기 다이오드 전압 스트레스를 저감하기 위한 새로운 형태의 클램핑 회로를 제안한다. 제안하는 회로는 하나의 커패시터로 구성된 매우 단순한 구조임에도 불구하고, 정류기 다이오드의 전압 스트레스를 큰 폭으로 감소시킨다. 뿐만 아니라, 해당 회로는 프리휠링 구간의 전류를 감소시키며, 출력 인덕터의 사이즈 또한 줄일 수 있다는 장점을 지닌다. 따라서 제안된 컨버터는 정류기 다이오드의 도통손실을 큰 폭으로 저감하여 고효율을 달성할 수 있으며, 간단한 구조의 클램핑 회로와 줄어든 출력 필터 사이즈에 의해서 고밀도화를 달성할 수 있다. 제안된 컨버터의 타당성은 3.3kW, $270-420V_{DC}$의 CC-CV 모드 충전 조건하에서 실험하여 검증되었다.

  • PDF

A Fault Tolerant Control Technique for Hybrid Modular Multi-Level Converters with Fault Detection Capability

  • Abdelsalam, Mahmoud;Marei, Mostafa Ibrahim;Diab, Hatem Yassin;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.558-572
    • /
    • 2018
  • In addition to its modular nature, a Hybrid Modular Multilevel Converter (HMMC) assembled from half-bridge and full-bridge sub-modules, is able to block DC faults with a minimum number of switching devices, which makes it attractive for high power applications. This paper introduces a control strategy based on the Root-Least Square (RLS) algorithm to estimate the capacitor voltages instead of using direct measurements. This action eliminates the need for voltage transducers in the HMMC sub-modules and the associated communication link with the central controller. In addition to capacitor voltage balancing and suppression of circulating currents, a fault tolerant control unit (FTCU) is integrated into the proposed strategy to modify the parameters of the HMMC controller. On advantage of the proposed FTCU is that it does not need extra components. Furthermore, a fault detection unit is adapted by utilizing a hybrid estimation scheme to detect sub-module faults. The behavior of the suggested technique is assessed using PSCAD offline simulations. In addition, it is validated using a real-time digital simulator connected to a real time controller under various normal and fault conditions. The proposed strategy shows robust performance in terms of accuracy and time response since it succeeds in stabilizing the HMMC under faults.

The Realization of a Single-Phase Parallel Active Power Filter to Eliminate Harmonics of Source Current Generated by Nonlinear Loads (비선형부하에 의해 발생한 전원 전류의 고조파를 제거하기 위한 단상 병렬형 Active Power Filter의 구현)

  • Jang, Mok-Soon;Lee, Hu-Chan;Kim, Sang-Hoon;Park, Jong-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.220-221
    • /
    • 2006
  • This paper presents a single-phase parallel active power filter with an analog control circuit to eliminate for harmonic source currents generated by nonlinear loads. The proposed system removes the harmonic source currents by injecting a compensation current that is 180' out of phase with the load harmonic current. The detection of the load harmonics is realized by a simple new structure, referred to the Notch Filter with GIC (Generalized Impedance Converter), which has higher Q than existing harmonic detecters and a simpler structure. The compensation current is obtained using the proposed harmonic detection circuit, DC-Link voltage, and output current of the full-bridge inverter controlled current mode PWM controller. The operation of the proposed system is verified experimentally.

  • PDF

High Power Factor Three Phase Rectifier for High Power Density AC/DC Conversion Applications

  • Cho, J.G.;Jeong, C.Y.;Baek, J.W.;Song, D.I.;Yoo, D.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.648-653
    • /
    • 1998
  • The conventional three-phase rectifier with bulky LC output filter has been widely used in the industry because of its distinctive advantages over the active power factor correction rectifier such as simple circuit, high reliability, and low cost. Over than 0.9 power factor can be achieved, which is acceptable in most of industry applications. This rectifier, however, is not easy to use for high power density applications since the LC filter is bulky and heavy. To solve this problem, a new simple rectifier is presented in this paper. By eliminating the bulky LC filter from the conventional diode rectifier without losing most of the advantages of the conventional rectifier, very high power density power conversion with high power factor can be achieved. Operation principle and design considerations are illustrated and verified by Pspice simulation and experimental results from a prototype of 3.3 kW rectifier followed by 100KHz zero voltage switching full bridge PWM converter

  • PDF