• Title/Summary/Keyword: Full scale measurement

Search Result 201, Processing Time 0.033 seconds

Development of Profilometry based on a Curvature Measurement (곡률에 근거한 형상 측정기술 개발)

  • Kim, Byoung-Chang
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.130-134
    • /
    • 2007
  • I present a novel curvature profilometer devised fur the profile measurement of aspheric and free-form surfaces on the nanometer scale. A profile is reconstructed from measuring the curvature of a test part of the surface at several locations along a line. For profile measurement of free-farm surfaces, methods based on local part curvature sensing have strong appeal. Unlike full-aperture interferometry they do not require customized null optics. The measurement accuracy of the curvature profilometer was assessed by comparison with a well-calibrated interferometer in NIST. Experimental results prove that the maximum discrepancy turns out to be 37 nm on the 28 mm measurement range for the spherical mirror.

An Experimental Study on the Placed Steel-Plate Cell Method for Construction of Seawall (호안조성용 거치식 강판셀공법의 실험적 연구)

  • Park, Yong Myung;Oh, Sung Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.249-257
    • /
    • 1997
  • This study will present the experimental research on the establishment of design considerations and structural integrity of the placed steel-plate cell methods for seawall and waterbreak, which have some benefits in the aspects of construction cost, time and equipments compared with the existing methods. The behavior of steel-plate cell structure is complicate due to stiffeners and cell-arc junction. There is also an ambiguity on lateral pressure by cell and arc filler. To resolve such problems, full scale cell $(D11.0^m{\times}H14.0^m{\times}12t)$ has been designed and fabricated, then placed on the seabed and filled. The strain measurement has also been performed to build up the design technology together with numerical analysis.

  • PDF

Amplitude dependency of damping of tall structures by the random decrement technique

  • Xu, An;Xie, Zhuangning;Gu, Ming;Wu, Jiurong
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.159-182
    • /
    • 2015
  • This study focuses on the amplitude dependency of damping of tall structures by the random decrement technique (RDT). Many researchers have adopted RDT to establish the amplitude dependency of damping ratios in super-tall buildings under strong wind loads. In this study, a series of simulated examples were analyzed to examine the reliability of this method. Results show that damping ratios increase as vibration amplitudes increase in several cases; however, the damping ratios in the simulated signals were preset as constants. This finding reveals that this method and the derived amplitude-dependent damping ratio characteristics are unreliable. Moreover, this method would obviously yield misleading results if the simulated signals contain Gaussian white noise. Full-scale measurements on a super-tall building were conducted during four typhoons, and the recorded data were analyzed to observe the amplitude dependency of damping ratio. Relatively wide scatter is observed in the resulting damping ratios, and the damping ratios do not appear to have an obvious nonlinear relationship with vibration amplitude. Numerical simulation and field measurement results indicate that the widely-used method for establishing the amplitude-dependent damping characteristics of super-tall buildings and the conclusions derived from it might be questionable at the least. More field-measured data must be collected under strong wind loads, and the damping characteristics of super-tall buildings should be investigated further.

Evaluation of Foil Strength by Full Scale Strain Measurement (실선 계측에 의한 수중익 강도 평가)

  • I.H. Choe;K.Y. Chung;O.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.37-43
    • /
    • 1995
  • The procedure and the results of the full scale strain measurement of the long-range high-speed foil catamaran are described. The wave induced stresses at the center struts of the foils were measured during the sea trials in order to evaluate the hydrodynamic force acting on the foils and to verify the structural safety of the foil structures. From the statistical properties of the measured response of the stress, the most probable maximum values of the lift force and the stresses at the foils in service life of the ship are predicted and compared with the design parameters of the foils which were applied in the design of the subject ship. The available prediction processes of the measured stress are studied and the results of the applied processes are compared with each other.

  • PDF

Stability analysis of shield tunnel segment lining by field measurement and full scale bending test (실대형 하중재하 시험 및 현장계측을 통한 쉴드터널 세그먼트 안정성 분석)

  • Lee, Gyu-Phil;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.611-620
    • /
    • 2019
  • The shield tunnel was mostly applied to cable tunnel with a diameter of 3~4 m, recently 7.8 m diameter shield tunnel was constructed in the lower section of the Incheon International Airport runway and is planning or under construction to roads and railway tunnels in the lower section of the Han River. Segments are also becoming larger as the shield tunnel cross-section increases, which causes a number of problems in the design, construction, and performance evaluation of segments. In this study, segment lining structural safety, criteria for serviceability check considering axial forces and quality control method for approximately 8 m in diameter shield tunnel were reviewed by field measurements and full scale bending test.

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Huh, Yong-Hak;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2013
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

Theory of Cosmic Reionization in the New Era of Precision Cosmology

  • Ahn, Kyungjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.234.2-234.2
    • /
    • 2012
  • As the accuracy in the measurement of cosmological parameters is ever-increasing in this era of precision cosmology, astrophysical constraints on high-redshift universe is also getting tighter. Three dimensional (3D) tomography of the high-redshift (z>~7) universe is expected to be made through the next-generation radio telescopes including various SKA pathfinders and SKA itself, which calls for extensive theoretical predictions. We present our new simulations of cosmic reionization covering the full dynamic range of radiation sources, and also the mock data for the (1) large-scale CMB polarization anisotropy for Planck mission, (2) small-scale, kinetic Sunyaev-Zel'dovich effect for South Pole Telescope project, and (3) 21-cm observations. We show that the new constraints on CMB from Planck will constrain the models of reionization significantly, which then should be tested by 3D tomography of high-redshift universe through the 21-cm observations by future radio telescopes.

  • PDF

USING WEB CAMERA TECHNOLOGY TO MONITOR STEEL CONSTRUCTION

  • Kerry T. Slattery;Amit Kharbanda
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.841-844
    • /
    • 2005
  • Computer vision technology can be used to interpret the images captured by web cameras installed on construction sites to automatically quantify the results. This information can be used for quality control, productivity measurement and to direct construction. Steel frame construction is particularly well suited for automatic monitoring as all structural members can be viewed from a small number of camera locations, and three-dimensional computer models of steel structures are frequently available in a standard electronic format. A system is being developed that interprets the 3-D model and directs a camera to look for individual members as regular intervals to determine when each is in place and report the results. Results from a simple lab-scale system are presented along with preliminary full-scale development.

  • PDF

Measurement of Flow Field in a Domestic Boiler Circulation Pump by PIV (PIV에 의한 가정용보일러용 순환펌프의 내부 유동장 계측)

  • Im, Y.C.;Kim, J.H.;Choi, M.S.;Lee, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.13-19
    • /
    • 1999
  • The purpose of the present experimental study is to apply multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to high-speed flow region within a domestic boiler circulation pump. Two different kinds of flow rate($27{\ell}/min,\;19{\ell}/min$)are selected as experimental condition. A volute casing and Impeller made of transparent Polycarbonate were made for the easy access of the illumination laser via fiber optical line and cylinder lens assembly to the measuring region. A CCD camera is syncronized with AOM to acquire clear original particle images. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. The instantaneous and time-mean velocity distribution, velocity profile and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a commercial circulation pump.

  • PDF

Development of Rain Gauge and Observation Error (우량계 개발과 측정 오차)

  • 김대원;이부용
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1055-1060
    • /
    • 2002
  • A new method of automatic recording raingauge is developed to measure rainfall 1200mm full scale with high accuracy and resolution. The principle of new instrument is to detect a weight change of a buoyant weight according to a change in water level of raingauge measured by the use of a strain gauge load cell. This method has the advantage of increasing measurement accuracy, since no moving equipment is used. Laboratory test of the instrument was recorded 0.4% error of 190mm rainfall amount. The validity of new instrument was examined by comparing its measured values with values recorded by automatic weather station on June 24 to 25 2001 at Daegu Meteorological Station, when there is 148.3mm rainfall amount. In spite of much rainfall there is only 0.77mm difference of total rainfall amount. This instrument was accomplished high accuracy and resolution at field test in much rainy day.