• Title/Summary/Keyword: Full Specimen

Search Result 311, Processing Time 0.018 seconds

Quantitative and qualitative evaluation on the accuracy of three intraoral scanners for human identification in forensic odontology

  • Eun-Jeong Bae;Eun-Jin Woo
    • Anatomy and Cell Biology
    • /
    • v.55 no.1
    • /
    • pp.72-78
    • /
    • 2022
  • The purpose of this study was to analyze the accuracy of intra oral scanner (IOS) to confirm the applicability of IOS for the recording and analysis of tooth morphology in forensics. The less damaged mandible specimen with many teeth remaining was scanned three times using three types of intraoral scanners (CS3600, i500, and Trios3). For quantitative comparisons of the scanned images produced by these intraoral scanners, root mean square (RMS) values were computed using a three-dimensional analysis program and a one-way ANOVA was conducted with Tukey HSD (honestly significant difference) as a post-hoc analysis (α=0.05). The repeatability of the full scan data was highest with the i500 (0.14±0.03 mm), and the post-hoc analysis confirmed significant differences between the CS3600 and the i500 outcomes (P-value=0.003). The repeatability of the partial scan data for the teeth in the mandible was highest with the i500 (0.08±0.02 mm), and the post-hoc analysis confirmed significant differences between the CS3600 and the i500 (P-value=0.016). The precision of the full scan data was highest with the i500 (0.16±0.01 mm) but the differences were not statistically significant (P-value=0.091). Meanwhile, the precision of the partial scan data for the teeth in the mandible was highest with the Trios3 (0.22±0.02 mm), but the differences were not statistically significant (P-value=0.762). Considering that the scanning of other areas of the oral cavity in addition to the teeth is important in forensic odontology, the i500 scanner appears to be the most appropriate intraoral scanner for human identification. However, as the scope of oral scanning is generally limited to teeth in the practice of dentistry, additional discussions of how to apply the IOS in forensic odontology are needed. Ultimately, the results here can contribute to the overall discussion of the forensic applicability dental data produced by intraoral scanners.

Estimation of Refractive Index in MIR range from the Reflectance Measurements for IR Optics Materials (반사율 측정에 의한 적외선 광학재료의 중적외선 굴절률 추정)

  • Jin, Doo-han;Jeong, Kyung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.411-416
    • /
    • 2020
  • An optical arrangement has been set inside a photo-spectrometer to measure the reflectance of IR optics materials in mid IR range. The optical arrangement consists of equally spaced 4 gold coated full reflecting mirrors with the incidence angle of 45°. Baseline beam intensity IB has been measured while the beam proceeds through the 4 mirrors. Reflectance of a mirror has been estimated from the IB. And the beam intensity IS with the specimen in the optical path has been measured with the 4th mirror replaced with the specimen. Reflectance of the specimen has been estimated from the value of IS/IB. Then the estimated reflectance has been put in Fresnel equation relating reflectance and refractive index(RI) to estimate the RI of the material. Measurement has been made for sapphire, germanium, magnesium fluoride, and zinc sulfide. The estimated RI of the materials are closely matching with reference data and the maximum difference less than 2% over the wavelength range 3-5㎛ for all materials tested. As an FT-IR photo-spectrometer with a broadband wavelength infrared light source is used, this method has the advantage of measuring the refractive index at multiple wavelengths in a single measurement.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing (유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가 )

  • Eun-Kyung Lee;Jin-Young Kim;Ho-Jin Baek;Kang-Seok Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.67-76
    • /
    • 2023
  • In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab (바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Young Ju;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.247-255
    • /
    • 2004
  • An experimental program was undertaken to develop seismic retrofit methods of existing steel moment connections with floor slab for improved seismic performance. Five full-scale composite specimens were tested under cyclic loading. Conventional through-diaphragm connections [please check this; no search results were found for through-diaphragm connections] composed of square-tube column and H-beam were retrofitted by adding either a bottom-flange dogbone (RBS) or an improved welded horizontal stiffener at the beam bottom flange. The effectiveness of the proposed retrofit connections schemes was evaluated. The specimen retrofitted using the RBS concept at the bottom flange showed poor connection ductility. In contrast. specimens with the proposed horizontal stiffener details exhibited improved connection ductility.

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam

  • Turetta, Maxime;Odenbreit, Christoph;Khelil, Abdelouahab;Martin, Pierre-Olivier
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.441-452
    • /
    • 2020
  • Within the French CIFRE research project COMINO, an innovative type of composite beam was developed for buildings that need fire resistance with no additional supports in construction stage. The developed solution is composed of a steel U-shaped beam acting as a formwork in construction stage for a reinforced concrete part that provides the fire resistance. In the exploitation stage, the steel and the reinforced concrete are acting together as a composite beam. This paper presents the investigation made on the load bearing capacity of this new developed steel-concrete composite section. A full-scale test has been carried out at the Laboratory of Structural Engineering of the University of Luxembourg. The paper presents the configuration of the specimen, the fabrication process and the obtained test results. The beam behaved compositely and exhibited high ductility and bending resistance. The shear connection in the tension zone was effective. The beam failed by a separation between the slab and the beam at high deformations, excessive shear forces conducted to a failure of the stirrups in this zone. The test results are then compared with good agreement to analytical methods of design based on EN 1994 and design guidelines are given.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Prediction of Fracture Resistance Curves for Nuclear Piping Materials (원자력 배관재료의 파괴저항곡선 예측)

  • 장윤석;석창성;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1051-1061
    • /
    • 1995
  • In order perform leak-before-break design of nuclear piping systems and integrity evaluation of reactor vessels, full stress-strain (.sigma. - .epsilon.) curves and fracture resistance (J-R) curves are required. However it is time-consuming and expensive to obtain J-R curves experimentally. The objective of this paper is to develop two methods for J-R curve prediction. In the first method, elastic-plastic finite element analyses for a series of crack length / specimen width ratio were performed. Accordingly the load versus load line displacement (P .delta.) curve corresponding to the fracture strain is obtained and the J-R curve based on the generalized locus method is obtained. In the second method, the correlation between .sigma.-.epsilon. curves and J-R curves was statistically analyzed and an empirical equation to predict the J-R curve from the .sigma.-.epsilon. test result is proposed. A good correlation between the predicted results based on the proposed methods and the experimental ones is obtained.