• Title/Summary/Keyword: Full Scale Fire Experiment

Search Result 20, Processing Time 0.025 seconds

ANALYSIS OF FIRE CHARACTERISTICS IN APARTMENT BUILDING THROUGH FULL SCALE EXPERIMENT AND ZONE MODEL SIMULATION

  • Yoon, Myong-O;Park, Jin-Kook;Kim, Choong-Ik;Ryou, Hong-Sun;Kim, Jin-Gon;Kim, Myung-Bae;Choi, Jun-Seok;Kim, Kwang-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.413-422
    • /
    • 1997
  • Fire characteristics of a typical apartment building in Korea was studied through full scale experiment and zone model simulation. The fire was ignited at the living room and allowed to spread to other parts of a single unit in a five storied apartment building. Various data including temperatures, species concentrations, and images were collected in the experiment. A zone model(CFAST) was used to analyze the same apartment building that represents the average households in Korea. The results were compared with a full scale experiments. While CFAST allows one compartment involved with fire, the experiment allowed the fire to spread to other compartments. Therefore, the comparison between experimental data and Zone-Model data is valid until the living-room fire spread to other parts of the apartment. Flashover occurred at approximately 380 seconds in a fire experiment, and at approximately 420 seconds in Zone-Model. Based on all of data between experimental data and Zone-Model data, it is concluded that the safe escape time is about 250 seconds.

  • PDF

Full Scale Experiment of Fire Phenomena in case of Reinforced Concrete Structured Apartment Building -Regarding the enclosure fire growth and the structural fire vulnerability findings- (철근콘크리트 구조 공동주택 실물화재 실험 연구 -화재성상 파악 및 취약부위 도출을 중심으로-)

  • 윤명오
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-50
    • /
    • 1996
  • In many of the developed countries, there have been continuous offers to observe and understand the fire phenomenon for the establishment of fire safety and the development of fire protection technology. In the past, full scale fire experiments have been conducted for the development of the construction technology and the design methods in order to secure the safety of the buildings and the people as well. This study aims at the statistics concerning the structural vulnerablity parts based on the full scale fire experiment in one of the apartment buildings that represents the average households in Korea, thereby acquring the experimental technology, and the basic data needed for the prediction of enclosure fire phenomenon which is critical for the establishment of evalution methods through simulation, and has also presents secured problems concerning the balcony structure and the window types that requires imediate improvement.

  • PDF

A Study on the Response Characteristics of Fire Detector by Full-scale Experiment of Fire Phenomena in the Row House (주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구)

  • SaKong, Seong-Ho;Kim, Shi-Kuk;Lee, Chun-Ha;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • This paper is for response feature of fire detectors not only to analysis response feature of fire detector, but also to observe flame spread of inside-building and fire enlargement by using the row house which is supposed to be broken up. Many kinds of popular detectors such as heat type detector(differential type, fixed temperature type, Analogue type)and smoke type(light scattered type, Analogue type, single alarm type) were installed in the house in order to check for the change of temperature by installing of thermocouples. As a result, smoke detectors are better than heat detectors when it comes to making effective fire-detect system in the row house.

Similarity of energy balance in mechanically ventilated compartment fires: An insight into the conditions for reduced-scale fire experiments

  • Suto, Hitoshi;Matsuyama, Ken;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2898-2914
    • /
    • 2022
  • When evaluating energy balance and temperature in reduced-scale fire experiments, which are conducted as an alternative to full-scale fire experiments, it is important to consider the similarity in the scale among these experiments. In this paper, a method considering the similarity of energy balance is proposed for setting the conditions for reduced-scale experiments of mechanically ventilated compartment fires. A small-scale fire experiment consisting of various cases with different compartment geometries (aspect ratios between 0.2 and 4.7) and heights of vents and fire sources was conducted under mechanical ventilation, and the energy balance in the quasi-steady state was evaluated. The results indicate the following: (1) although the compartment geometry varies the energy balance in a mechanically ventilated compartment, the variation in the energy balance can be evaluated irrespective of the compartment size and geometry by considering scaling factor F (∝heffAwRT, where heff is the effective heat transfer coefficient, Aw is the total wall area, and RT is the ratio of the spatial mean gas temperature to the exhaust temperature); (2) the value of RT, which is a part of F, reflects the effects of the compartment geometry and corresponds to the distributions of the gas temperature and wall heat loss.

The Assessment of Fire Suppression Capability of Water-Mist System for Machinery Engine Room (선박기관구역 미분무수 소화설비 화재진압 성능 평가)

  • Choi, Byung-Il;Han, Yon-Shik;Oh, Chang-Bo;Kim, Myung-Bae;Kim, Chang
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.111-117
    • /
    • 2007
  • Full scale fire suppression test by water mist system were performed in machinery engine room ($20m{\times}15m{\times}10m$) according to IMO MSC/circ. 1165. The K-factor and operating pressure were 2.4 and 80 bar respectively. To assess the prediction capability of numerical simulation, FDS simulation was performed at the same operating condition with the full scale experiment. It was found that FDS simulation had the limitation for the fire extinguishing time prediction but was able to predict the spatial temperature distribution.

An Experimental Study of Smoke Movement in a Kindergarten Fire (어린이집 화재 시 연기 거동에 관한 실험적 연구)

  • Lee, Sung-Ryong;Han, Dong-Hun
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.62-69
    • /
    • 2013
  • In this study, a full scale experiment was carried out to analyze the heat and smoke movement. The experiment was conducted a kindergarten that is scheduled to reconstruction. The kindergarten is a two-story building and the area of each floor is 252 $m^2$. 36 l heptane was used as a fuel and heptane was burned in a 0.8 m square steel pool. Maximum heat release rate was 1.7 MW at natural condition. Smoke movement and temperature variation were measured during the experiment. In the first floor corridor, smoke was moved downward about 1.4 m at 1 minute after a fire. Corridor was filled with smoke at 4 minutes after a fire. In the second floor, temperature was maintained at $70^{\circ}C$ or less. But, second floor rooms were filled with smoke.

Experimental Study of the Blowoff Flame Phenomena Due to Changes of Balcony Length (발코니 길이변화에 의한 화염분출성상의 실험적 고찰)

  • Kim, Hoe-Cheon;Sohn, Jang-Yeul;Park, Hyung-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • In the case of the fire outburst within a partitioned space, it can disappear inside it through smoldering process if the fire cannot obtain sufficient imflammability. On the contrary, if it obtains it, the fire is not restricted within the room, spreading to the higher levels beyond outside windows and the compartment room. The method to prevent the fire spread through windows is considered to build a balcony or equip with sprinkler facilities. This case study is to identify which effects and controlibility a balcony brings about on the spread of fire through a full scale model experiment. In order to understand the effects of fire spread on the upper levels of the room on fire by changing the length of balcony, the temperature was measured, radiant heat was investigated, and products of combustion were analyzed. The result showed that when fire occured, longer length of the balcony, which linked to the outside wall of the apartments, led to the blocking of the fire spread, lower level of radiant heat, and significantly less transfer of toxic gases, and the driving force of the outburst of flame was identified as the attractive force due to the turbulence of uncombusted gases, which exist on the upper level of the outbursting flame.

The onset of extreme fire behaviour in a mine drift

  • Hansen, Rickard
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.282-290
    • /
    • 2018
  • The onset of extreme fire behaviour in a mine drift with longitudinal ventilation was analysed. A fire in a mine drift with continuous fuel load, involving several separate fires may lead to flames tilted horizontally and filling up the entire cross section. This will lead to earlier ignition, higher fire growth rate, higher fire spread rate and a severe fire behaviour. The focus has been on what changes take place at the onset and signs of the impending phenomenon. It was found that the fire gas temperature at the ceiling level provided a poor indicator. At the downstream far-field region of the fire, the sudden temperature increase at the lowest levels of the cross section and the sudden increase in flow velocities would provide signs of extreme fire behaviour. The corresponding full-scale heat release rates of the experiments at the onset of extreme fire behaviour were found to be very high for mining applications but not necessarily for tunnel fires. The heat release rate threshold for a mine drift with smaller cross-sectional dimensions would decrease considerably, increasing the likelihood of occurrence. The distance between the fuel items will play an important role during the initiation of horizontal flames.

Fire resistance of high strength fiber reinforced concrete filled box columns

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.611-621
    • /
    • 2017
  • This paper presents an investigation on the fire resistance of high strength fiber reinforced concrete filled box columns (CFBCs) under combined temperature and loading. Two groups of full-size specimens were fabricated. The control group was a steel box filled with high-strength concrete (HSC), while the experimental group consisted of a steel box filled with high strength fiber concrete (HFC) and two steel boxes filled with fiber reinforced concrete. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The test results show that filling fiber concrete can improve the fire resistance of CFBC. Moreover, the configuration of longitudinal reinforcements and transverse stirrups can significantly improve the fire resistance of CFBCs.