• Title/Summary/Keyword: Full Scale Fatigue Test

Search Result 45, Processing Time 0.023 seconds

A Study on Statistical Characteristics of Fatigue Life of Carbon Fiber Composite (탄소섬유 복합재 피로수명의 통계적 특성 연구)

  • Joo, Young-Sik;Lee, Won-Jun;Seo, Bo-Hwi;Lim, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • The objective of this paper is to identify the fatigue properties of carbon-fiber composite which is widely applied for the development of aircraft structures and obtain data for full-scale fatigue test. The durability and damage tolerance evaluation of composite structures is achieved by fatigue tests and parameters such as fatigue life factor and load enhancement factor. The specimens are made with carbon-fiber/epoxy UD tape and fabric prepreg. Fatigue tests are performed with several stress ratios and lay-up patterns. The Weibull shape parameters are analyzed by Sendeckyj model and individual fatigue lives with Weibull distribution. And the fatigue life factor and load enhancement factor considering reliability are evaluated.

Durability Evaluation of Hybrid Expansion Joint System with Improved Replacement (보수성을 개선한 복합형 신축이음장치(HRS) 내구성 평가)

  • Jung Woo Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Durability was evaluated by performing a full-scale vertical load fatigue test and a wheel load performance test on the HRS, which reduces the replacement time of the existing expansion joint and improves serviceability to allow partial replacement by lane. As a result of the vertical load fatigue test, the maximum stress of the rail-type expansion joint is 170 MPa, which is about 47.8% of the yield strength of the HRS expansion joint rail 355 MPa. The vertical load fatigue test of the HRS expansion joint with improved serviceability set the size and load of the load plate according to the road bridge design standards, did not show any fracture behavior in the vertical load fatigue test and the wheel load performance test 2 million times, and its durability and safety were verified.

An Experimental Study on Fatigue Durability for Composite Torque Link of Helicopter Landing Gear (헬리콥터 착륙장치 복합재 토크링크 피로내구성에 대한 실험적 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.26-31
    • /
    • 2010
  • This research work contributes to a study for the procedure and methodology to assess the fatigue durability for a composite torque link for helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the residual strength degradation approach on the basis of material test data. The full scale fatigue test was performed and compared with the analysis results.

Fatigue Characteristic Evaluation in Water Pipe Welds Considering of Welding Residual Stress (용접잔류응력을 고려한 상수도 강관의 피로특성 평가)

  • Choi, Jung-Hun;Song, Weon-Keyu;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.7-10
    • /
    • 2007
  • In case of large steel water pipe, it have been observed that its fracture mostly occurs due to the complicated outside fatigue load on the pipe in the underground. It is also well known that its damage and leakage happen mainly in a weld zone. In this study we evaluated the fatigue characteristics based on size effect and residual stress by comparing the test results on the standard specimen collected from real pipe with those on full scale pipe.

  • PDF

A Study on Operating Software Development and Calibration of Multi-Axis Simulation (다축 시뮬레이터의 구동 소프트웨어 개발 및 보정에 관한 연구)

  • 정상화;류신호;신형성;김상석;김종태;박용래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.141-141
    • /
    • 2000
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in th ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, multi-axis durability testing simulator is used to car교 out the fatigue test. In this paper, the operation software for simultaneously driving 3-axis simulator is developed and the real-time signals of input-output data are displayed in window of PC. Moreover, the displacements and the loads of 3-axis actuators are calibrated separately and the operating characteristics of the actuators are evaluated.

  • PDF

A Study on Operational Software Development and Calibration of Multi-Axis Vibration Testing Device (다축 제어용 가진기의 구동소프트웨어 개발 및 보정에 관한 연구)

  • 정상화;김재열;류신호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in todey's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, Multi-axis durability testing device is used to carry out the fatigue test. In this paper, The operation software for simultaneously driving Multi-axis vibration testing device is developed and the input and output data are displayed in windows of PC controller with real time. Moteover the characteristics of the displacement and the load of Multi-axis actuators are calibrated separately.

  • PDF

Seismic Stability and Fatigue Performance Test of Lead Rubber Bearings (납-적층고무받침의 지진안정성 및 피로거동 실험)

  • Cho, Chang-Beck;Kwahk, Im-Jong;Kim, Young-Jin;Kwark, Jong-Won;Cho, Hae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.537-544
    • /
    • 2006
  • In this study, performance level evaluation tests have been actually performed on laminated rubber seismic isolation bearings (LRB) made in Korea. To provide basic data for setting up fabrication criteria and performance evaluation criteria three real scale LRB were tested and the test results were analysised. Accordingly, a large capacity test device has been designed and manufactured to implement the tests. The device selected for evaluation is a circular LRB actually applied in bridges. Evaluation tests were conducted using full-scale LRB with diameter of 851mm in the rubber part and total height of 215mm of which the effective horizontal stiffness and equivalent damping ratio have been measured during the experiments.

  • PDF

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.

A Study on The Evaluation of Fracture Strength for Large Sized Structures Based upon Their Fracturing Characteristics (대형구조물의 파괴강도 특성 평가기술에 관한 연구)

  • Moon-Sik Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.102-111
    • /
    • 1993
  • One of the most important design procedures for large sized structures is the evaluation of fracture strength against fatigue and brittle fractures threatening to occur in their steel members. In this paper, the safety assessment based upon the knowledge about the fracturing characteristics of such ship structures was discussed, which can be estimated from such phenomena as fatigue crack propagation and brittle fractures, as obtained by employing fracture mechanics at the basic design stage. Model tests with a partial structure specimen of full size was carried out to authenticate a question as to whether or not the fracturing characteristics of such sophisticated structures could be estimated with precision from ordinary scale specimen tests, It was shown that the behviour of fatigue crack growth of large sized structures in this study could be predicted from the results of ordinary scale specimen test.

  • PDF

Structural Design and Experimental Investigation of A Medium Scale Composite Wind Turbine Blade Considering Fatigue Life (피로 수명을 고려한 중형 복합재 풍력터빈 블레이드의 구조설계 및 실험 평가)

  • Gong, Chang Deok;Bang, Jo Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • In this study, the various load cases by specified by the IEC61400-1 international specification and GL Regulations for the wind energy conversion system were considered, and a specific composite structure configuration which can effectively endure various loads was proposed. In order to evaluate the structure, the structural analysis for the composite wind turbine blade was performed using the finite element method(FEM). In the structural design, the acceptable configuration of blade structure was determined through the parametric studies, and the most dominant design parameters were confirmed. In the stress analysis using the FEM, it was confirmed that the blade structure was safe and stable for all the considerd load cases. Moreover the safety of the blade root joint with insert bolts, newly devised in this study, was checked against the design loads and also the fatigue loads. The fatigue life for operating more than 20 years was estimated by using the well-known S-N linear damage rule, the load spectrum and Spera's empirical equations. The full-scale static test was performed under the simulated aerodynamic loads. from the experimental results, it was found that the designed blade had the structural integrity. Furthermore the measured results were agreed with the analytical results such as deflections, strains, the mass and the radial center of gravity. The studied blade was successfully certified by an international institute, GL, of Germany.