• Title/Summary/Keyword: Full HD resolution

Search Result 30, Processing Time 0.024 seconds

Implementation of FPGA for Efficient Ray Tracing Hardware Supporting Dynamic Scenes (동적 장면을 지원하는 효율적인 광선 추적 하드웨어에 대한 FPGA상에서의 구현)

  • Lee, Jin Young;Kim, Cheong Ghil;Park, Woo-Chan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.23-26
    • /
    • 2022
  • In this paper, our ray tracing hardware is implemented on the latest high-capacity FPGA board. The system included ray tracing hardware for rendering and tree building hardware for handling dynamic scenes. The FPGA board used in the implementation is a Xilinx Alveo U250 accelerator card for data centers. This included 12 ray tracing hardware cores and 1 tree-building hardware core. As a result of testing in various scenes in Full HD resolution, the FPS performance of the proposed ray tracing system was measured from 8 to 28. The overall average is about 17.7 FPS.

Lossless Frame Memory Compression with Low Complexity based on Block-Buffer Structure for Efficient High Resolution Video Processing (고해상도 영상의 효과적인 처리를 위한 블록 버퍼 기반의 저 복잡도 무손실 프레임 메모리 압축 방법)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.20-25
    • /
    • 2016
  • This study addresses a low complexity and lossless frame memory compression algorithm based on block-buffer structure for efficient high resolution video processing. Our study utilizes the block-based MHT (modified Hadamard transform) for spatial decorrelation and AGR (adaptive Golomb-Rice) coding as an entropy encoding stage to achieve lossless image compression with low complexity and efficient hardware implementation. The MHT contains only adders and 1-bit shift operators. As a result of AGR not requiring additional memory space and memory access operations, AGR is effective for low complexity development. Comprehensive experiments and computational complexity analysis demonstrate that the proposed algorithm accomplishes superior compression performance relative to existing methods, and can be applied to hardware devices without image quality degradation as well as negligible modification of the existing codec structure. Moreover, the proposed method does not require the memory access operation, and thus it can reduce costs for hardware implementation and can be useful for processing high resolution video over Full HD.

Implementation and Performance Evaluation of a Video-Equipped Real-Time Fire Detection Method at Different Resolutions using a GPU (GPU를 이용한 다양한 해상도의 비디오기반 실시간 화재감지 방법 구현 및 성능평가)

  • Shon, Dong-Koo;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose an efficient parallel implementation method of a widely used complex four-stage fire detection algorithm using a graphics processing unit (GPU) to improve the performance of the algorithm and analyze the performance of the parallel implementation method. In addition, we use seven different resolution videos (QVGA, VGA, SVGA, XGA, SXGA+, UXGA, QXGA) as inputs of the four-stage fire detection algorithm. Moreover, we compare the performance of the GPU-based approach with that of the CPU implementation for each different resolution video. Experimental results using five different fire videos with seven different resolutions indicate that the execution time of the proposed GPU implementation outperforms that of the CPU implementation in terms of execution time and takes a 25.11ms per frame for the UXGA resolution video, satisfying real-time processing (30 frames per second, 30fps) of the fire detection algorithm.

Stereoscopic Video Compositing with a DSLR and Depth Information by Kinect (키넥트 깊이 정보와 DSLR을 이용한 스테레오스코픽 비디오 합성)

  • Kwon, Soon-Chul;Kang, Won-Young;Jeong, Yeong-Hu;Lee, Seung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.920-927
    • /
    • 2013
  • Chroma key technique which composes images by separating an object from its background in specific color has restrictions on color and space. Especially, unlike general chroma key technique, image composition for stereo 3D display requires natural image composition method in 3D space. The thesis attempted to compose images in 3D space using depth keying method which uses high resolution depth information. High resolution depth map was obtained through camera calibration between the DSLR and Kinect sensor. 3D mesh model was created by the high resolution depth information and mapped with RGB color value. Object was converted into point cloud type in 3D space after separating it from its background according to depth information. The image in which 3D virtual background and object are composed obtained and played stereo 3D images using a virtual camera.

Eye-Catcher : Real-time 2D/3D Mixed Contents Display System

  • Chang, Jin-Wook;Lee, Kyoung-Il;Park, Tae-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-54
    • /
    • 2008
  • In this paper, we propose a practical method for displaying 2D/True3D mixed contents in real-time. Many companies released their 3D display recently, but the costs of producing True3D contents are still very expensive. Since there are already a lot of 2D contents in the world and it is more effective to mix True3D objects into the 2D contents than making True3D contents directly, people became interested in mixing 2D/True3D contents. Moreover, real-time 2D/True3D mixing is helpful for 3D displays because the scenario of the contents can be easily changed on playback-time by adjusting the 3D effects and the motion of the True3D object interactively. In our system, True3D objects are rendered into multiple view-point images, which are composed with 2D contents by using depth information, and then they are multiplexed with pre-generated view masks. All the processes are performed on a graphics processor. We were still able to play a 2D/True3D mixed contents with Full HD resolution in real-time using a normal graphics processor.

  • PDF

Multi-Threaded Parallel H.264/AVC Decoder for Multi-Core Systems (멀티코어 시스템을 위한 멀티스레드 H.264/AVC 병렬 디코더)

  • Kim, Won-Jin;Cho, Keol;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.43-53
    • /
    • 2010
  • Wide deployment of high resolution video services leads to active studies on high speed video processing. Especially, prevalent employment of multi-core systems accelerates researches on high resolution video processing based on parallelization of multimedia software. In this paper, we propose a novel parallel H.264/AVC decoding scheme on a multi-core platform. Parallel H.264/AVC decoding is challenging not only because parallelization may incur significant synchronization overhead but also because software may have complicated dependencies. To overcome such issues, we propose a novel approach called Multi-Threaded Parallelization(MTP). In MTP, to reduce synchronization overhead, a separate thread is allocated to each stage in the pipeline. In addition, an efficient memory reuse technique is used to reduce the memory requirement. To verify the effectiveness of the proposed approach, we parallelized FFmpeg H.264/AVC decoder with the proposed technique using OpenMP, and carried out experiments on an Intel Quad-Core platform. The proposed design performs better than FFmpeg H.264/AVC decoder before the parallelization by 53%. We also reduced the amount of memory usage by 65% and 81% for a high-definition(HD) and a full high-definition(FHD) video, respectively compared with that of popular existing method called 2Dwave.

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

Fast Algorithm for Disparity Estimation in ATSC-M/H based Hybrid 3DTV (ATSC-M/H 기반의 융합형 3DTV를 위한 양안시차 고속 추정 알고리즘)

  • Lee, Dong-Hee;Kim, Sung-Hoon;Lee, Jooyoung;Kang, Dongwook;Jung, Kyeong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.521-532
    • /
    • 2014
  • ATSC-M/H based hybrid 3DTV, which is one of the service compatible 3DTV system, has considerable quality gap between the left and right views. And CRA(Conditional Replenishment Algorithm) has been proposed to deal with the issue of resolution mismatch and improve the visual quality. In CRA, the disparity vectors of stereoscopic images are estimated. The disparity compensated left view and simply enlarged right view are compared and conditionally selected for generating the enhanced right view. In order to implement CRA, a fast algorithm is strongly required because the disparity vectors need to be obtained at every layer and the complexity of CRA is quite high. In this paper, we adopted SDSP(Small Diamond Search Pattern) instead of full search and predicted the initial position of search pattern by examining the spatio-temporal correlation of disparity vectors and also suggested the SKIP mode to limit the number of processing units. The computer simulation showed that the proposed fast algorithm could greatly reduce the processing time while minimizing the quality degradation of reconstructed right view.

An Early Termination Algorithm for Efficient CU Splitting in HEVC (HEVC 고속 부호화를 위한 효율적인 CU 분할 조기 결정 알고리즘)

  • Goswami, Kalyan;Kim, Byung-Gyu;Jun, DongSan;Jung, SoonHeung;Seok, JinWook;Kim, YounHee;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2013
  • Recently, ITU-T/VCEG and ISO/IEC MPEG have started a new joint standardization activity on video coding, called High Efficiency Video Coding (HEVC). This new standard gives significant improvement in terms of picture quality for high resolution video. The main challenge in this upcoming standard is the time complexity. In this paper we have focused on CU splitting algorithm. We have proposed a novel algorithm which can terminate the CU splitting process early based on the RD cost of the parent and current level and the motion vector value of the current CU. Experimental result shows that our proposed algorithm gives on average more than about 10% decrement in time over ECU [8] with on average 1.78% of BD loss on the original.

Fast Non-integer Motion Estimation for HEVC Encoder (HEVC 부호화기를 위한 고속 비정수 움직임 추정)

  • Han, Woo-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.150-159
    • /
    • 2014
  • The latest video coding standard, HEVC can improve the coding efficiency significantly compared with the H.264/AVC. However the HEVC encoder requires much larger computational complexities. The longer 8-tap interpolation filter of the HEVC which is used in a non-integer motion estimation is one of the reasons and this paper aims to reduce the computational complexities. First of all, three shorter-tap interpolation filters for a motion estimation process are tested rather than the use of a standard interpolation filter. In addition, the fast searching strategies to reduce the number of comparisons for choosing the best non-integer motion vector are proposed. Finally, the interpolation process is selectively applied according to the searching strategy. By combining all of the techniques, the experimental results show that the encoding times can be reduced by 13.6%, 18.5% and 21.1% with the coding efficiency penalties of 0.7%, 1.5% and 2.5%, respectively. For the full-HD video sequences, the coding efficiency penalties are reduced to 0.4%, 1.1% and 1.6% at the same level of the encoding time savings, which shows the effectiveness of the proposed schemes for the high resolution video sequences.