• Title/Summary/Keyword: Full Bridge Inverter

Search Result 295, Processing Time 0.053 seconds

Static Overmodulation Strategies of Two Phase Full Bridge Inverter (2상 풀브릿지 인버터의 정적 과변조 기법)

  • Choi, Seung-Cheol;Lee, Byung-Song;Park, Chan-Bae;Mok, Hyung-Soo;Kim, Sang-Hoon;Kim, Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.220-226
    • /
    • 2010
  • In this paper, the static overmodulation is proposed for the 2-phase full bridge inverter. The overmodulation strategy increases a fundamental output voltage and improves a voltage utilization up to the maximum in the overmodulation range. The linear modulation range and static overmodulation range are defined in the 2-phase full bridge inverter. The overmodulation strategies which increase a voltage utilization until the 4-step mode by linearization of the output voltage in overmodulation range are proposed. To maintain a linearity of the relation between a reference voltage and a fundamental output voltage, this paper suggests a compensation voltage, whose magnitude or phase is modified to the proposed control scheme. Simulation and experimentation results demonstrate the effectiveness of the proposed algorithms.

  • PDF

A Study on the Control of Single Phase Induction Motor by Full Bridge Series Inverter (직렬 브리지형 인버터에 의한 단상 유도전동기의 속도제어)

  • Park, Jin-Gil;Roh, Young-O;Jung, Byung-Gun;Kang, Chang-Nam;Jung, Sam-Sig
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.912-915
    • /
    • 1993
  • In this paper, the speed of single phase induction motor driven by full bridge inverter is controlled by a PID controller under condition of disturbance load and setpoint changes, and the current characteristics of the system is investigated to look for the good properties of A.C. motor torque through the results of experiment. From the experimental result, it is confirmed that the speed of single phase induction motor driven by full bridge series inverter can be smoothly controlled by an analog PID controller.

  • PDF

Hybrid Multilevel Inverter Connecting a Full-bridge Inverter to a 5-level Inverter in Series (풀-브리지 인버터와 5-레벨 인버터의 직렬결합을 이용한 혼합형 멀티레벨 인버터)

  • Hong, Un-Taek;Choi, Won-Kyun;Kwon, Cheol-Soon;Kang, Feel-Soon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • This paper presents a circuit configuration of multilevel inverter to synthesize a large number of output voltage levels by connecting a full-bridge inverter to a 5-level inverter in series. We analyze the characteristics by computer-aided simulations and experiments when it has input voltage sources which have the same and the power of three in the amplitude. In addition, it is compared with the conventional transformer based multilevel inverter.

Digital Control of Two-Stage Electronic ballast for HID Lamps (2-단계 HID 램프용 전자식 안정기의 디지털 제어)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.229-230
    • /
    • 2013
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

  • PDF

Transient Current Control of Two-Stage Electronics Ballast for HID Lamps (HID 램프용 Two-Stage 전자식 안정기의 과도 전류 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The conventional Three-Stage electronic ballast is stable, but Two-Stage electronic ballast has been researching because of efficiency. Three-Stage electronic ballast is consisted of PFC circuit, buck converter, and inverter circuit, but Two-stage is consisted of PFC circuit, Buck-Inverter full bridge circuit. The Buck-Inverter full bridge inverter consists of two half bridge inverters for low frequency switching, and high frequency switching. In the case of street lamp it is far from a lamp to a ballast, the conventional pulsed high voltage ignitor can not turn on the HID lamps because of reduction of ignition voltage. Therefore, it needs to do the research on a resonant ignition to turn on the HID lamps. Therefore, in the Two-Stage electronic ballast which has the resonant tank for ignition, the transient resonant current because of low frequency changing is analyzed, the novel algorithm is proposed to resuce the transient current.

Design of High-Efficiency Full-Bridge Converter and Inverter for ESS (ESS용 고효율 풀브리지 컨버터 및 인버터 설계)

  • Jung, Jae-Hun;Lee, Chang-woo;Choi, Jin-ku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.685-688
    • /
    • 2015
  • A phase-shift full-bridge converter is widely used conventional converter. If the input power change in the variation of the output voltage, there is a time interval freewheeling according to a duty change. This is a factor of reducing the efficiency. In this paper, we propose a method for improving the efficiency of the converter/inverter systems that require high efficiency in the ESS. The proposed method was used for the duty control for solving the fail problem ZVS(Zero Voltage Switching) in Freewheeling interval. The proposed method was verified by experiments.

  • PDF

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF

A Single Phase Inverter Using the Central Arm (Central Arm을 이용한 Full-Bridge 단상 인버터)

  • Lee, Ho;Lee, Hwa-Choon;Kim, Seung-Ryong;Park, Sung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.78-84
    • /
    • 2011
  • In this paper, the switching frequency and THD for the reduction instead of traditional single phase inverter using a new type of central arm of the single phase inverter is proposed. The proposed single phase inverter topology, the existing one to add a arm by two-way central switch 3-level output voltage can be raised and, central arm, especially one or two of the switches by using a switch to the diode current switching algorithm was simplified. During the dead time because of this, depending on the direction of the current level does not appear in any other existing level compared to the inverter output voltage level of the THD has the advantage that less can be. The simulation and experimental results verified the validity of the proposed topology.

Recent PV PCS Technology (국내외 PV PCS 기술현황)

  • Choi Ju-Yeop;You Gwon-Jon;Jeong Young-Seok;So Jeong-Hoon;Choy Ick
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.117-122
    • /
    • 2005
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency converter bridge, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter bridge, and an AC filter. The high frequency converter bridge switching at 20kHz is used to generate bipolar PWM pulse, and the high frequency transformer raise its voltage twice, which is subsequently rectified by diode bridge rectifiers to result in a full-wave rectified sine wave. Finally, it is unfolded by a low frequency inverter bridge to result in a 60Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than the other systems due to elimination of 60Hz transformer.

  • PDF