• Title/Summary/Keyword: Full Bridge

Search Result 1,146, Processing Time 0.024 seconds

Efficient Control Method of ZVS Full-bridge PWM Converter with Pulse Load Current (펄스형 부하에서 ZVS Full-bridge PWM 컨버터의 효율 증대를 위한 제어 방법)

  • 김정원
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.404-408
    • /
    • 2000
  • The novel control method of ZVS Full-bridge PWM converter with pulse load current is proposed. This new control method can reduce the switching loss of switches during no load condition. Moreover by using feed-forward load current information this method can obtain better transient dynamics compared to the system with only linear feedback control.

  • PDF

Current Controlled Class-D Stereo Amplifier Using Three-Phase Full Bridge (3상 풀 브리지를 이용한 전류제어형 D급 스테레오 앰프)

  • 송권일;윤인국;오덕진;김희준
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.13-16
    • /
    • 2000
  • This paper presents a simple class-D stereo amplifier using 3-phase full bridge circuit configurations which is controlled by a new current control switching method. Although this class-D amplifier has an only one current control loop with the proposed switching method, a good performance can be obtained. In this paper, a strategy for driving stereo signal amplifier with 3-phase full bridge is discussed. With the experimental results, usefulness of the proposed amplifier is confirmed.

  • PDF

A Study on the loss Model and Characteristic Comparison of Three-Level Converter and Full-Bridge Converter through the Conduction loss Analysis of Power devices (전력용 반도체의 전도손실 분석을 통한 Three-Level 컨버터와 Full-Bridge 컨버터의 손실모델 및 특성비교에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.122-125
    • /
    • 2004
  • This paper presents the loss analysis comparison for Three-Level Converter and Full-Bridge converter. The result of the analysis is verified with 2.5kW prototype.

  • PDF

On the Characteristics of a Full Bridge Inverter with low Pass LC Filter (저역통과 LC필터를 가진 전브리지형 인버터의 특성에 관하여)

  • Park, J.G.;Chung, J.Y.;Nam, T.K.;Roh, Y.O.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.342-344
    • /
    • 1994
  • In this paper, the dynamic characteristics of the existing filter is analyzed to obtain a sinewave current from full bridge inverter with low pass LC filter. The Chevshev's filter, which is most typical low pass filter, is adopted for this investigation and driven controller of full bridge inverter used EV8097BH one-chi p controller.

  • PDF

ZVS Phase Shift Full-Bridge Converter's Small Signal Modeling and Digital Controller Design (ZVS 위상천이 풀브리지 컨버터의 소신호 모델링 및 디지털 제어기 설계)

  • Kim, Jeong-Woo;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.321-322
    • /
    • 2014
  • In this paper, a zero-voltage switching (ZVS) phase shift full-bridge converter is analyzed. The small-signal model is derived to design a digital controller. PLECS simulation shows how sampling method effects on transfer function of ZVS phase shift full-bridge converter.

  • PDF

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

A Hybrid PWM-Resonant DC-DC Converter for Electric Vehicle Battery Charger Applications

  • Lee, Il-Oun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1158-1167
    • /
    • 2015
  • In this paper, a new hybrid DC-DC converter is proposed for electric vehicle 3.3 kW on-board battery charger applications, which can be modulated in a phase-shift manner under a fixed frequency or frequency variation. By integrating a half-bridge (HB) LLC series resonant converter (SRC) into the conventional phase-shift full-bridge (PSFB) converter with a full-bridge rectifier, the proposed converter has many advantages such as a full soft-switching range without duty-cycle loss, zero-current-switching operation of the rectifier diodes, minimized circulating current, reduced filter inductor size, and better utilization of transformers than other hybrid dc-dc converters. The feasibility of the proposed converter has been verified by experimental results under an output voltage range of 250-420V dc at 3.3 kW.

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber Circuits (무손실 스너버적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 캔버터)

  • Kim, E.S.;Kim, T.J.;Joe, K.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1989-1992
    • /
    • 1997
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output is presented. Due to using of the non-dissipative snubber in the primary side, a single stage high-power factor isolated full bridge boost converter has a significant reduction of switching losses in main switching devices and output rectifiers of the primary and secondary side, respectively. The non-dissipative snubber adopted in this study is consisted of a snubber capacitor C. and a snubber inductor $L_r$, a fast recovery snubber diode $D_r$, a commutation diode $D_p$. This paper presents the complete operating principles, theoretical analysis and simulation results.

  • PDF

A Study on the Digital Control of Single Phase Induction Motor Driven by the Full Bridge Resonant Inverter(I) - The Current Characteristics of Full - bridge Resonant Inverter at Low Frequency - (전브리지 공진형 인버터에 의한 단상 유도전동기의 디지탈제어에 관한 연구(I) -저주파수에서 전브리지 공진형 이버터의 전류특성에 대하여-)

  • 노영오;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.70-79
    • /
    • 1993
  • The application of A.C. motor to servo system is rapidly increased according to the recent advance of power electronics and digital control techniques. The induction motor which has a simple structure and needs less maintenance is used in the industrial field for the variable speed and position control recently. In this paper, the current characteristic of the full-bridge resonant inverter is studied by comparing with the computer simulation and the laboratory experiment when the ratio of forced frequency to the natural frequency and the ratio of conduction time to the period at the given frequency is changed. And then, the full-bridge resonant inverter is applied to the speed control of single phase induction motor.

  • PDF