• Title/Summary/Keyword: Fukushima Daiichi Nuclear Power Plant Accident

Search Result 48, Processing Time 0.031 seconds

Estimation of long-term effective doses for residents in the regions of Japan following Fukushima accident

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Kim, Jiyoon;Suh, Kyung-Suk
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.837-842
    • /
    • 2019
  • A large amount of radioactive material was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in 2011 and dispersed into the environment. Though seven years have passed since the Fukushima Daiichi Nuclear Power Plant accident, some parts of Japan are still under the influence of radionuclide contamination, especially Fukushima Prefecture and prefectures neighboring Fukushima Prefecture. The long-term effective doses and the contributions of each exposure pathway (5 exposure pathways) and radionuclide ($^{131}I$, $^{134}Cs$, and $^{137}Cs$) were evaluated for people living in the regions of Fukushima and neighboring prefectures in Japan using a developed dose assessment code system with Japanese specific input data. The results estimated in this study were compared with data from previously published reports. Groundshine and ingestion were predicted to contribute most significantly to the total long-term dose for all regions. The contributions of each exposure pathway and radionuclide show different patterns for certain regions of Japan.

Comparison of Dose Rates from Four Surveys around the Fukushima Daiichi Nuclear Power Plant for Location Factor Evaluation

  • Sanada, Yukihisa;Ishida, Mutsushi;Yoshimura, Kazuya;Mikami, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.184-193
    • /
    • 2021
  • Background: The radionuclides released by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident 9 years ago are still being monitored by various research teams and the Japanese government. Comparison of different surveys' results could help evaluate the exposure doses and the mechanism of radiocesium behavior in the urban environment in the area. In this study, we clarified the relationship between land use and temporal changes in the ambient dose rates (air dose rates) using big data. Materials and Methods: We set a series of 1 × 1 km2 meshes within the 80 km zone of the FDNPP to compare the different survey results. We then prepared an analysis dataset from all survey meshes to analyze the temporal change in the air dose rate. The selected meshes included data from all survey types (airborne, fixed point, backpack, and carborne) obtained through the all-time survey campaigns. Results and Discussion: The characteristics of each survey's results were then evaluated using this dataset, as they depended on the measurement object. The dataset analysis revealed that, for example, the results of the carborne survey were smaller than those of the other surveys because the field of view of the carborne survey was limited to paved roads. The location factor of different land uses was also evaluated considering the characteristics of the four survey methods. Nine years after the FDNPP accident, the location factor ranged from 0.26 to 0.49, while the half-life of the air dose rate ranged from 1.2 to 1.6. Conclusion: We found that the decreasing trend in the air dose rate of the FDNPP accident was similar to the results obtained after the Chernobyl accident. These parameters will be useful for the prediction of the future exposure dose at the post-accident.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

The Fukushima Nuclear Accident and Environmental Risk: A Survey of Fukushima Residents

  • Miyawaki, Takeshi;Sasaoka, Shinya
    • Asian Journal for Public Opinion Research
    • /
    • v.5 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • The Fukushima nuclear accident caused by an earthquake and a subsequent tsunami on March 11, 2011 has seriously impacted the environment surrounding the Fukushima Daiichi nuclear power plant. While all the residents near the plant were evacuated from the area deemed uninhabitable after the accident, residents of the neighboring area outside of the evacuation zone still seem to live in fear of invisible radiation. To understand Fukushima residents' thinking about the environmental risks that accompany a nuclear disaster, we utilize a poll of the residents of Fukushima conducted in 2013. Based on the survey data, we reveal factors that seem to strongly affect their knowledge and concerns about nuclear power plants. The results of the multivariate analysis show the importance of the following two factors: (1) confidence in mass media, and (2) trust in institutions in charge of administering the accident, especially the central government, the Nuclear and Industrial Safety Agency, and Tokyo Electric Power Company. We conclude that the more people trust mass media and particular institutions, the more likely it is that they are have an elevated sense of anxiety and fear of the presence of nuclear plants.

SUGGESTIONS FOR IMPROVMENTS OF THE RADIATION PROTECTION FOR THE EMERGENCY WORKERS DURING THE FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT

  • Khasawneh, Khalid;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Following the emergency work in Fukushima Daiichi nuclear power plant, more attention was paid for the radiation protection of workers working under severe accident condition. The protection procedure for the emergency workers, including the on-site emergency center, the seismic isolated building and the reestablishment of the radiation protection framework were analyzed to investigate drawbacks and deficiencies which led to adverse effects on the emergency planning and on emergency workers' health and comfort. Those drawbacks were identified and studied, and then suggestions were made to enhance the emergency working condition to avoid any future problems during severe accident emergency work and management.

Radiation Monitoring in the Residential Environment: Time Dependencies of Air Dose Rate and 137Cs Inventory

  • Yoshimura, Kazuya;Nakama, Shigeo;Fujiwara, Kenso
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Background: Residential areas have some factors on the external exposure of residents, who usually spend a long time in these areas. Although various survey has been carried out by the government or the research institutions after the Fukushima Daiichi Nuclear Power Plant accident, the mechanism of radiocesium inventory in the terrestrial zone has not been cleared. To better evaluate the radiation environment, this study investigated the temporal changes in air dose rate and 137Cs inventories (Bq/m2) in residential areas and agricultural fields. Materials and Methods: Air dose rate and 137Cs inventories were investigated in residential areas located in an evacuation zone at 5-8 km from the Fukushima Daiichi Nuclear Power Plant. From December 2014 to September 2018, the air dose rate distribution was investigated through a walking survey (backpack survey), which was conducted by operators carrying a γ-ray detector on their backs. Additionally, from December 2014 to January 2021, the 137Cs inventories on paved and permeable grounds were also measured using a portable γ-ray detector. Results and Discussion: In the areas where decontamination was not performed, the air dose rate decreased faster in residential areas than in agricultural fields. Moreover, the 137Cs inventory on paved surfaces decreased with time owing to the horizontal wash-off, while the 137Cs inventory on permeable surfaces decreased dramatically owing to the decontamination activities. Conclusion: These findings suggest that the horizontal wash-off of 137Cs on paved surfaces facilitated the air dose rate decrease in residential areas to a greater extent compared with agricultural fields, in which the air dose rate decreased because of the vertical migration of 137Cs. Results of this study can explain the faster environmental restoration in a residential environment reported by previous studies.

Countermeasures for Management of Off-site Radioactive Wastes in the Event of a Major Accident at Nuclear Power Plants

  • Lee, Ji-Min;Hong, Dae Seok;Shin, Hyeong Ki;Kim, Hyun Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.339-347
    • /
    • 2022
  • Major accidents at nuclear power plants generate huge amounts of radioactive waste in a short period of time over a wide area outside the plant boundary. Therefore, extraordinary efforts are required for safe management of the waste. A well-established remediation plan including radioactive waste management that is prepared in advance will minimize the impact on the public and environment. In Korea, however, only limited plans exist to systematically manage this type of off-site radioactive waste generating event. In this study, we developed basic strategies for off-site radioactive waste management based on recommendations from the IAEA (International Atomic Energy Agency) and NCRP (National Council on Radiation Protection and Measurements), experiences from the Fukushima Daiichi accident in Japan, and a review of the national radioactive waste management system in Korea. These strategies included the assignment of roles and responsibilities, development of management methodologies, securement of storage capacities, preparation for the use of existing infrastructure, assurance of information transparency, and establishment of cooperative measures with international organizations.

Radiation Measurements at Fukushima Medical University over a Period of 12 Years Following the Nuclear Power Plant Accident

  • Ryo Ozawa
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • Background: Fukushima Medical University (FMU) is located 57 km northwest of the Fukushima Daiichi Nuclear Power Plant. Our laboratory has been conducting environmental radiation measurements continuously before and after the nuclear accident. We aimed to report the observed behavior of radiation originating from the released radioactive materials due to the accident, predict future trends, and disseminate the results to the local residents. Materials and Methods: Measurements of the counting rate by a diameter of 76 mm and a length of 76 mm thallium-doped sodium iodide (NaI[Tl]) scintillation detector (S-1211-T; Teledyne Brown Engineering Environmental Services) in the central part of the laboratory, and the dose rate outward at the window by NaI(Tl) scintillation detector and digital processor (EMF211; EMF Japan Co. Ltd.) were conducted. Results and Discussion: Measurements by Teledyne S-1211-T showed that in the early stages, radiation from radioactive isotopes with short half-lives was dominant, while radiation from radioactive isotopes with longer half-lives became dominant as the measurement period became longer. Through nonlinear least squares regression, both short and long half-lives were successfully determined. It was also possible to predict how the radiation dose would decrease. The environmental radiation trends around FMU were measured by the EMF211. Both measurements were affected by rainfall and snow accumulation. Decontamination work on the FMU campus impacted measurements by the EMF211 especially. Conclusion: The results of two types of measurements, one at the center and the other at the window side of the laboratory, were presented. By applying a simplified model, radiation from radioactive isotopes with short and long half-lives was identified. Based on these results, future trends were predicted, and the information was used for public communication with the local residents.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

The Impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Accident on People's Perception of Disaster Risks and Attitudes Toward Nuclear Energy Policy

  • Iwai, Noriko;Shishido, Kuniaki
    • Asian Journal for Public Opinion Research
    • /
    • v.2 no.3
    • /
    • pp.172-195
    • /
    • 2015
  • Multiple nationwide opinion surveys, carried out by the government (cabinet office), major media (national newspapers and NHK), the National Institute for Environmental Studies, and the Atomic Energy Society of Japan, have revealed that the Fukushima nuclear accident has heightened people's perception of disaster risks, fear of nuclear accidents, and increased recognition of pollution issues, and has changed public opinion on nuclear energy policy. The opinion gap on nuclear energy policy between specialists and lay people has widened since the disaster. The results of the Japanese General Social Survey data show that objections to the promotion of nuclear energy are strong among females, and weaker among young males and the supporters of the LDP. These findings are similar to the data collected after the Chernobyl accident. People who live in a 70km radius of nuclear plants tend to evaluate nuclear disaster risks higher. Distance from nuclear plants and the perception of earthquake risk interactively correlate with opinions on nuclear issues. Among people whose evaluation of earthquake risk is low, those who live nearer to the plants are more likely to object to the abolishment of nuclear plants. It was also found that the nuclear disaster has changed people's behavior; they now try to save electricity. The level of commitment to energy saving is found to relate to opinions on nuclear issues.