• Title/Summary/Keyword: Fuel-$NO_x$

Search Result 294, Processing Time 0.026 seconds

Combustion and Exhaust Emission Characteristics of DME in a Common-rail Diesel Engine (커먼레일 디젤엔진에서 DME의 연소 및 배기 특성)

  • An, Sang-Gyu;Kim, Myung-Yoon;Yoon, Seung-Hyun;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2007
  • An experiment was conducted with a common-rail direct injection diesel engine operated with neat dimethyl ether (DME). In order to investigate the effect of combustion characteristics and emission reduction of DME fuel, the experiment was performed at various injection pressure from 35 MPa to 50MPa. Also, the exhaust emissions from the engine were compared with that of diesel fuel. In this work, Cooled EGR was implemented to reduce $NO_x$ exhaust emissions. The results showed that DME has shorter ignition delay than that of diesel fuel. Despite of the increased $NO_x$ emissions with DME at an equal engine power compared to the case of fueling diesel, the engine emitted zero soot emissions all over the operating conditions in this work. $NO_x$ emission can be decreased greatly by adopting 45% of EGR while maintaining zero soot emission. Judging from the result of engine test, DME is a suitable fuel for common-rail diesel engine due to it's clean emission characteristics.

Effect of Mixing Ratio of n-heptane Fuel on the Combustion Characteristics of n-butanol Fuel (n-heptane 연료 혼합비에 따른 n-butanol 연료의 연소 특성)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.21-26
    • /
    • 2015
  • This study was performed to provide the information of the combustion characteristics of n-butanol fuel in accordance with the n-heptane fuel mixing ratio. The closed homogeneous reactor model was used for the analysis. The analysis conditions were set to 800 K of the initial temperature, 20 atm of initial pressure and 1.0 of equivalence ratio. The results of analysis were compared in terms of combustion temperature, combustion pressure, CO, Soot and $NO_X$ emissions. The results of combustion and exhaust emission characteristics showed that ignition delay was decreased and the combustion temperature was increased as the n-heptane mixing ratio was increased. Also, the carbon monoxide(CO) was slightly decreased however, the soot and nitrogen oxides($NO_X$) increased a little in accordance with the n-heptane fuel mixing ratio. In addition, the pressure difference was almost the same in any conditions.

Numerical Analysis on Flow and Heat Transfer of Horizontal Firing Boiler (Horizontal Firing Boiler의 열유동 해석)

  • Kim, K.C.;Man, M.H.;Kim, J.K.;Choi, C.R.;Kang, D.W.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.973-978
    • /
    • 2001
  • Numerical Analysis for liquid fuel combustion of horizontal firing boiler is performed. The mixture-fraction/PDF equilibrium chemistry model is used to predict the combustion of the vaporized fuel. P1 model for radiation effect is used. Superheater, reheater and economizer is modeled using porous with heat sink. Flow and temperature field is investigated, and distribution of thermal $NO_{x}$ and CO is investigated. Computation as the change of excess air and swirling is performed to investigate the change of thermal $NO_{x}$.

  • PDF

Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate (단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성)

  • Cho, Sang-Hyun;Oh, Kwang-Chul;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

Experimental Study on NOx Reduction and CO Emission by Fuel Lean Reburning Process (연료 희박 재연소 과정에 의한 NOx 저감 및 CO 발생에 대한 실험적 연구)

  • Lee, Chang-Yeop;Kim, Hak-Young;Baek, Seung-Wook;Kim, Se-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.216-223
    • /
    • 2008
  • Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on $NO_X/CO$ reduction in LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection location of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the fuel lean reburning system was adapted, it is important that the control of some factors such as initial equivalence ratio, reburn fuel fraction and temperature of reburn fuel injection region. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Exhaust Gas Recirculation/Water Injection Experimental Results for NOx Emission Reduction in Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.823-832
    • /
    • 2007
  • This paper presents the static characteristics of EGR-WI combined system. The water injection system was statically characterized by recording the engine exhaust outlet $NO_x$ emissions for comparison with baseline $NO_x$ emissions. Effects of the water injection system on CO and HC emissions and fuel consumption were examined. The research engine used for these experiments was a 103 kW turbocharged, intercooled, 2.5 L VM Motori CIDI engine equipped with a cooled EGR system. Water injection in the intake system demonstrated the potential for significant reductions in engine outlet $NO_x$ emissions. The system has reduced engine outlet $NO_x$ emissions by 40-50%, but caused significant increases in CO and HC emissions, particularly at low loads. Fuel consumption effects were minimal.

HCCI Combustion Engines with Ultra Low CO2 and NOx Emissions and New Catalytic Emission Control Technology (CO2/NOx 초저배출형 HCCI 엔진 연소기술과 신촉매제어기술)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1413-1419
    • /
    • 2008
  • The Kyoto Protocol, that had been in force from February 16, 2005, requires significant reduction in $CO_2$ emissions for all anthropogenic sources containing transportation, industrial, commercial, and residential fields, etc, and automotive emission standards for air pollutants such as particulate matter (PM) and nitrogen oxides $(NO_x)$ become more and more tight for improving ambient air quality. This paper has briefly reviewed homogeneous charge compression ignition (HCCI) combustion technology offering dramatic reduction in $CO_2,\;NO_x$ and PM emissions, compared to conventional gasoline and diesel engine vehicles, in an effort of automotive industries and their related academic activities to comply with future fuel economy legislation, e.g., $CO_2$ emission standards and corporate average fuel economy (CAFE) in the respective European Union (EU) and United States of America (USA), and to meet very stringent future automotive emission standards, e.g., Tier 2 program in USA and EURO V in EU. In addition, major challenges to the widespread use of HCCI engines in road applications are discussed in aspects of new catalytic emissions controls to remove high CO and unburned hydrocarbons from such engine-equipped vehicles.

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine (디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향)

  • 임재근;최순열
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

SRF Combustion Pollutants' Impact on Domestic Emissions Assessments (SRF 사용 시 발생되는 대기오염물질 (PM, NOx)의 국가배출량 기여도 평가)

  • Kim, Sang-Kyun;Jang, Kee-Won;Kim, Jong-Hyeon;Yoo, Chul;Hong, Ji-Hyung;Kim, Hyung-Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.656-665
    • /
    • 2012
  • Recently, yearly production of SRF (Solid Recovered Fuel) as an alternative fuel has been rapidly increasing because of the limited waste disposal, rise in oil prices and reduction of greenhouse gas emission. However, SRF using facilities are excluded from the National Air Pollutant Emission Estimation because SRF using facilities are not yet included among the SCC (Source Classification Code). The purpose of this research was to estimate the emission and emission factor of SRF using facilities' PM and $NO_x$, in order to investigate whether or not they are included in the National Air Pollutant Emission Estimation. The emission factors of SRF using facilities' PM and $NO_x$ are calculated as 0.216 kg/ton, and 3.970 kg/ton, and the emission was estimated based on the yearly total SRF usage of 2011. The results above was 18.7% for PM and 12.8% for $NO_x$ emissions from combustion facility (SCC2) in manufacturing industry combustion (SCC1) of CAPSS. If CAPSS estimate the emission by adding SCC on unlisted SRF in case of Boiler (SCC3) fuel, both PM and $NO_x$'s emissions would increase by 15.8% and 11.3% compare to the emissions for the existing combustion facility. As a result, emissions caused by SRF should be considered when calculating the National Air Pollutant Emission Estimation. In addition, further researches to develop emission factor and improve subdivided SCC should be done in the future, for the accurate and reliable estimation of National Emission.

Electrochemical Performance and Cr Tolerance in a La1-xBaxCo0.9Fe0.1O3-δ (x = 0.3, 0.4 and 0.5) Cathode for Solid Oxide Fuel Cells

  • Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.308-314
    • /
    • 2015
  • The electrochemical performance and Cr poisoning behavior of $La_{1-x}Ba_xCo_{0.9}Fe_{0.1}O_{3-{\delta}}$ (LBCF, x = 0.3, 0.4, 0.5) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathodes were investigated for solid oxide fuel cells (SOFCs). The polarization resistance of the LBCF/GDC/LBCF symmetrical cell was found to decrease with increasing Ba content (x value). This phenomenon might be associated with the high oxygen vacancy concentration in the LBCF sample, with x = 0.5. In addition, there was no chromium poisoning in the LBCF cathode. On the other hand, the polarization resistance of the LSCF cathode was found to significantly increase after exposure to gaseous chromium species; it appears that this result stemmed from the formation of $SrCrO_4$ phase. Therefore, it can be expected that LBCF can be a durable potential cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFC).