• Title/Summary/Keyword: Fuel types

Search Result 748, Processing Time 0.026 seconds

Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle (배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구)

  • 박기진;윤성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Polymer Electrolyte Fuel Cell Simulation Using Simulink (Simulink를 이용한 고분자 전해질 연료전지 시스템 시뮬레이션)

  • Hwang, Nam-Sun;Lee, Ho-Jun;Ju, Byung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.109-112
    • /
    • 2007
  • In this paper, a mathematical modeling was developed to simulate 1kW class air cooled Polymer Electrolyte Membrane Fuel Cell(PEMFC) system. The proposed modeling was conducted under SIMULINK based environment. The model ing was developed based on the thermodynamic and chemical equilibrium. The objective is to design and implement the entire fuel cell system model ing including the system controller modeling. The fuel cell process and the control system modeling should have to be connected with each other simultaneously, therefore the two types of modeling influences each other when the system simulator run. The fuel cell modeling libraries are simulated using the SIMULINK under the thermodynamic and chemical equilibrium base. The PID controller application was designed and developed to test the process modeling and verify it. This the prototype development of the fuel cell system to design and test more complicate fuel cell systems, like the residential power generation system. The simulation results was compared to the real PEMFC system performance. We have achieved the reasonable accordance with the Lab test and the simulation results.

  • PDF

A Experimental Study on the Instability of Combustion in a Dump Combustor with Respect to Fuel and Air Mixing and Flow Conditions (혼합기 공급방식에 따른 덤프연소기의 연소 불안정성에 관한 실험적 연구)

  • Hong, Jung-Goo;Lee, Min-Chul;Lee, Uen-Do;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.963-970
    • /
    • 2005
  • The combustion instability of turbulent flames is the most important problem of the gas turbine combustor. Thus improved understanding of mechanisms of combustion instability is necessary for the design and operation of gas turbine combustors. In this study, the cause of the combustion instability in a rearward-step dump combustor was investigated with respect to the fuel flow modulation; choked fuel flow, unchoked fuel flow and fully premixed mixture flow. We observed various types of combustion instabilities with respect to the change of equivalence ratio, fuel flow conditions and fuel injection location. Particularly in the unchoked fuel flow condition, it was found that the oscillation time of combustion instability is strongly related to the convection time of the fuel and that the pressure fluctuation in a lab-scale combustor is highly related to the vortex and the equivalence ratio fluctuations due to fuel flow modulation and unmixedness of the fuel and air.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

LPi Engine Combustion and Emission Characteristics Depending on LPG Properties from Various Fuel Supply Types by Using DC Motor Type Fuel Pump (DC모터형 연료펌프를 이용한 연료공급방식별 LPG성상에 따른 LPi엔진 연소 및 배출가스 특성)

  • Kim, Ju-Won;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.907-914
    • /
    • 2008
  • This study is mainly focused on the assessment of return, semi return, and returnless fuel supply system for an LPi engine. In order to compare the return type with returnless one with various LPG blends, combustion analysis and cyclic THC emission characteristic were tested at the part load operating condition of the LPi engine. Considering heat balance of each fuel supply systems, pressure and temperature increment of return type showed lower at the fuel rail during idle warm up operation. However, those of returnless type at LPG tank maintained stable and slow increment because the heat transfer from the LPi engine was minimized. Finally, hot restartability of each fuel supply systems were evaluated with the various LPG blends and fuel temperatures. As a result, semi return type has equivalent performance to return type considering combustion and emission characteristic, hot restartability performance for LPi engine.

FUEL ECONOMY IMPROVEMENT FOR FUEL CELL HYBRID ELECTRIC VEHICLES USING FUZZY LOGIC-BASED POWER DISTRIBUTION CONTROL

  • Ahn, H.S.;Lee, N.S.;Moon, C.W.;Jeong, G.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.651-658
    • /
    • 2007
  • This paper presents a new type of fuzzy logic-based power control strategy for fuel cell hybrid electric vehicles designed to improve their fuel economy while maintaining the battery's state of charge. Since fuel cell systems have inherent limitations, such as a slow response time and low fuel efficiency, especially in the low power region, a battery system is typically used to assist them. To maximize the advantages of this hybrid type of configuration, a power distribution control strategy is required for the two power sources: the fuel cell system and the battery system. The required fuel cell power is procured using fuzzy rules based on the vehicle driving status and the battery status. In order to show the validity and effectiveness of the proposed power control strategy, simulations are performed using a mid-size vehicle for three types of standard drive cycle. First, the fuzzy logic-based power control strategy is shown to improves the fuel economy compared with the static power control strategy. Second, the robustness of the proposed power control strategy is verified against several variations in system parameters.

A Study on the Exhaust Characteristics of Pollutants from Recreational Vehicle (RV) in Korea (국내 다목적저동차의 오염물질 배출특성 연구)

  • Jung Sung Woon;Ryu Jeong Ho;Lyu Young Sook;Lim Cheol Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2006
  • In Korea, the number of recreational vehicle (RV) has been increased dramatically recent year. Now there are emission regulations for RV which include pollutants such as CO, HC, NOx, PM. However considering the trend of preferring RV, there needs more strict strategies to control emissions from this type of vehicle. For that reason, we studied emission characteristics of RV and provided basic emission data to evaluate the contribution of RV to the total air pollutant emissions and to establish RV emission management plan. A total of 21 RV were tested on the chassis dynamometer system ranging from small to large engine displacement by vehicle speed, fuel types, regulations and fuel efficiency in order to investigate the characteristics of CO, HC, NOx and PM. For the test modes, 10 different driving speed modes and CVS-75 mode were used. On the basis of this study, RV pollutants emission factors and management strategies will be proposed.

Pt Electrocatalysts Composited on Electro-Spun Pt Nanowires for Direct Methanol Fuel Cells

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.421-425
    • /
    • 2012
  • Two types of Pt nanoparticle electrocatalysts were composited on Pt nanowires by a combination of an electrospinning method and an impregnation method with NaBH4 as a reducing agent. The structural properties and electrocatalytic activities for methanol electro-oxidation in direct methanol fuel cells were investigated by means of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. In particular, SEM, HRTEM, XRD, and XPS results indicate that the metallic Pt nanoparticles with polycrystalline property are uniformly decorated on the electro-spun Pt nanowires. In order to investigate the catalytic activity of the Pt nanoparticles decorated on the electro-spun Pt nanowires, two types of 20 wt% Pt nanoparticles and 40 wt% Pt nanoparticles decorated on the electro-spun Pt nanowires were fabricated. In addition, for comparison, single Pt nanowires were fabricated via an electrospinning method without an impregnation method. As a result, the cyclic voltammetry and chronoamperometry results demonstrate that the electrode containing 40 wt% Pt nanoparticles exhibits the best catalytic activity for methanol electro-oxidation and the highest electrochemical stability among the single Pt nanowires, the 20 wt% Pt nanoparticles decorated with Pt nanowires, and the 40 wt% Pt nanoparticles decorated with Pt nanowires studied for use in direct methanol fuel cells.