• Title/Summary/Keyword: Fuel temperature

Search Result 3,995, Processing Time 0.031 seconds

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.

The Study on NOx Emission for Hydrogen Fueled Engine(1) (수소기관에서 NOx 특성에 관한 연구(1))

  • Lee, S.J.;Choi, G.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 1997
  • The goals of this research are to understand the $NO_x$ emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 percent basis heating value of the total fuel. The effects of intake air temperature on $NO_x$ emission were studied. The intake air temperature was controlled by flow rate of liquid nitrogen. The major conclusions of this work include : (i) the tested engine was run without backfire under 70 percent hydrogen fuel supplemented. (ii) radicals of nitrogen gas in the intake pipe were increased by 30 percent and cylinder gas temperature was decreased by 24 percent as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$ ; and (iii) $NO_x$ emission per unit heating value of supplied fuel was decreased by 45 percent with same decrease of intake air temperature.

  • PDF

Measuement of Temperature Probability Density Functions Variation in a Flame Near Fuel Nozzle of Gas Turbine Combustor Sector Rigs by CARS Thermometry (CARS 장치를 이용한 가스 터빈 연소기의 연료노즐 근처 화염 온도 분포 변화측정)

  • Park, Chul-Woung;Lee, Jong-Ho;Han, Yeoung-Min;Ko, Young-Sung;Lee, Kang-Yeop;Kim, Hyung-Mo;Lee, Soo-Yong;Yang, Soo-Seok;Lee, Dae-Sung;Jeon, Chung-Hwan;Chang, Young-June;Shin, Hyun-Dong;Hahn, Jae-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.7-14
    • /
    • 2002
  • The probability density functions (PDF) of temperature were measured by coherent anti-Stokes Raman Spectroscopy (CARS) in flames of gas turbine combustor sector rig of an aero-engine. The combustor was operated at simulated ground idle conditions with standard kerosene fuel. Temperature PDFs had been measured near fuel nozzle with change of rotation of a swirler and existence of a prefilmer. The characteristic features of temperature PDFs showed the variation of combustion configurations at four experimental conditions. Without a prefilmer, large recirculation of high temperature gas was expected in the co-flow condition and un vaporized fuel fragments were detected in the counter-flow condition. With a prefilmer, the enhanced mixing increased combustion intensity near fuel nozzle in the counter-flow condition and the flame was attached far from the fuel nozzle in the co-flow condition.

  • PDF

Effect of operating conditions on carbon corrosion in High temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) (고온형 고분자 전해질막 연료전지(HT-PEMFC) 구동환경에 따른 탄소 담지체 부식 평가)

  • Lee, Jinhee;Kim, Hansung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.1-89.1
    • /
    • 2011
  • The influence of potential and humidity on the electrochemical carbon corrosion in high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs) is investigated by measuring $CO_2$ emission at different potentials for 30 min using on-line mass spectrometry. These results are compared with low tempterature polymer electrolyte membrane fuel cells(LT-PEMFCs) operated at lower temperature and higher humidity condition. Although the HT-PEMFC is operated at non humidified condition, the emitted $CO_2$ in the condition of HT-PEMFC is more than LT-PEMFC at the same potential in carbon corrosion test. Thus, carbon corrosion shows a stronger positive correlation with the cell temperature. In addition, the presence of a little amount of water activate electrochemical carbon corrosion considerably in HT-PEMFC. With increased carbon corrosion, changes in fuel cell electrochemical characteristics become more noticeable and thereby indicate that such corrosion considerably affects fuel cell durability.

  • PDF

Effect of Injection Pressure on Low Temperature Combustion in CI Engines (압축착화 엔진에서 분사압이 저온연소에 미치는 영향)

  • Jang, Jaehoon;Lee, Sunyoup;Lee, Yonggyu;Oh, Seungmook;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • Diesel low temperature combustion (LTC) is the concept where fuel is burned at a low temperature oxidation regime so that $NO_x$ and particulate matters (PM) can simultaneously be reduced. There are two ways to realize low temperature combustion in compression ignition engines. One is to supply a large amount of EGR gas combined with advanced fuel injection timing. The other is to use a moderate level of EGR with fuel injection at near TDC which is generally called Modulated kinetics (MK) method. In this study, the effects of fuel injection pressure on performance and emissions of a single cylinder engine were evaluated using the latter approach. The engine test results show that MK operations were successfully achieved over a range of with 950 to 1050 bar in injection pressure with 16% $O_2$ concentration, and $NO_x$ and PM were significantly suppressed at the same time. In addition, with an increase in fuel injection pressure, the levels of smoke, THC and CO were decreased while $NO_x$ emissions were increased. Moreover, as fuel injection timing retarded to TDC, more THC and CO emissions were generated, but smoke and $NO_x$ were decreased.

A Study on Reliability Improvement of BLDC Motor for Combat Vehicle in High Temperature Environment (고온 환경에서의 전투차량용 BLDC 모터 신뢰성 향상에 관한 연구)

  • Yoon, Hyo-Jin;Nam, Yoon-Wook;Park, Kyoung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • Combat vehicles require high levels of maneuverability, firepower, armor, and operability. A high-performance power system is required for optimal maneuverability. The fuel pump which supplies fuel stably is very important to achieve this. The fuel pump consists of a pump part, a motor part, and a control part. It is equipped with a BLDC motor. Numerous failures of the fuel pump occurred during vehicle operation when exposed to vibration, shock, and high temperature. The cause of failure was confirmed to be stator slip of the BLDC motor. Stator slip is a consequence of the interference loss between the stator and the housing of the motor part in an high temperature environment. The failure of the fuel pump was solved through size control of the motor housing and the stator. We performed vibration testing at high temperature for verification. This study contributes to improving the reliability of combat vehicles.

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Fuel-Rich Combustion Characteristic of a Combined Gas Generator (혼합식 가스발생기의 연료과농 연소특성)

  • Lee, Dongeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.593-600
    • /
    • 2015
  • In this study, a combined hybrid rocket system is newly introduced which has characteristics of both gas generators and afterburner type hybrid rockets. In particular, a combined gas generator utilizing solid fuel and liquid/gas oxidizer was designed as a primary combustor of the system. Combustion tests were carried out with various equivalence ratio affected by parameters such as fuel length, oxidizer flow rate, fuel port diameter and fuel type. In general, fuel-rich gas generator produces low combustion gas temperature to meet the temperature requirement and the target temperature was transiently set less than 1600 K. Since it was found that controlling parameters showed limited effects on the change of equivalence ratio, mixture of $O_2$ and $N_2$ as an oxidizer was additionally introduced. As a result, a combined gas generator successfully produced combustion gas temperature of less than 1600 K Future studies will carry out more combustion tests to attain fuel-rich combustion gas temperature less than 1200 K, which was a temperature requirement of a gas generator system in the previous studies.

Data Monitoring System for Activation Analysis Based on Fuel Heater of Diesel Cars (디젤차량용 연료히터의 활성화분석용 데이터 모니터링 장치)

  • Lee, Bo-Hee;Son, Byong-Min;Zhao, Xiang;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.179-184
    • /
    • 2014
  • In this paper, we have developed a data monitoring system for activation analysis based on fuel heater of diesel cars. The light oil of diesel engine below a constant temperature be changed to the waxing materials of a semisolid status like a paraffin, and then it may not start. In order to evaluate an engine activation performance, we suggest an engine start time with an change between an extremely low temperature and high temperature, a delay time goes with heater resistor and current and pressure. So, we have developed sensor module system that can obtain the operational status data between fuel line and fuel heater, and evaluate the performance of fuel heater through monitoring of a temperature and pressure. Finally, we can gather the temperature and pressure data of this system with mobile terminal, remotely and propose an utility of this system that can find problems of fuel heater through measured data.

Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept. (KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석)

  • 장근무;황용수;김선훈
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF