• 제목/요약/키워드: Fuel tank noise

검색결과 26건 처리시간 0.025초

승용차 연료탱크의 유량변화에 따른 진동 소음 특성 (Characteristics of Vibration and Noise due to Various Fuel Quantity in Vehicle Fuel Tank)

  • 안성덕;김찬묵;강태원;사종성;권요섭;임동민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.626-629
    • /
    • 2007
  • Vibration originated from the fuel pump is transmitted to the fuel pump module and fuel tank. Fuel tank transmits it to chassis of vehicle. Also, noise perturbed through fuel and fuel tank is radiated out. Dynamic characteristics of fuel tank are composed of tank structure and containing fuel quantity. Therefore, this study is focused at fuel tank with various quantity. As a result, characteristics of vibration for various fuel quantity in a tank are identified as the more mass of fuel is, the less the 1st resonance frequency decrease. Also, between acoustic camera and mode shape of modal analysis are used for searching the positions of radiated noise and are found to be in accordance with each other.

  • PDF

승용차량용 연료탱크 슬로싱 현상에 대한 실험적 고찰 및 평가 방법에 대한 연구 (Experimental Study and Evaluation Method for Sloshing Noise of Fuel Tank on Passenger Vehicle)

  • 안세진;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.444-451
    • /
    • 2014
  • The signal patterns of slosh noise produced by the fuel tank of a passenger vehicle are characterized by analyzing vehicle interior noise, fuel tank vibration, and near-field noise radiated from the fuel tank. This paper also shows the noise transfer path analysis results performed from the fuel tank to the vehicle inside. On top of them, physical index is described, demonstrating a good correlation with subjective feeling of slosh noise. It is essential to identify the main noise transfer paths for redesigning of the fuel tank system aiming at reducing slosh noise and also helpful to apply physical index in evaluating and reducing this noise. It is found that structure-borne path is the main root of slosh noise and a value reveals a good correlation with subjective feeling.

LPG 차량에 장착된 연료탱크의 방사소음 예측에 관한 연구 (Prediction of the radiated noise generated by fuel tank of LPG vehicle)

  • 이상권;김성종;이대엽;김태용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.869-874
    • /
    • 2006
  • Fuel tank noise of the LPG vehicle is getting more important for reduction of vehicle noise, because major noise of the vehicle was reduced. Therefore, in this paper, Fuel tank noise and vibration are measured, then the modal analysis is applied for prediction of fuel tank noise. To predict fuel tank noise, various methods are applied by using FEM and BEM techniques

  • PDF

LPG차량에 장착된 연료탱크의 구조 진동으로 인한 방사소음 예측에 관한 연구 (A Study on the Prediction of the Radial Noise Generated by Structural Vibration of the Fuel Tank in LPG Vehicle)

  • 김태용;김성종;이대엽;이상권
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.136-142
    • /
    • 2007
  • Fuel tank noise of the LPG vehicle is getting more important for reduction of vehicle noise, because major noise of the vehicle was reduced. Therefore, in this paper, Fuel tank noise and vibration are measured, then the modal analysis is applied for prediction of fuel tank noise. To predict fuel tank noise, various methods are applied by using FEM and BEM techniques.

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

대형 승용차량용 연료펌프의 소음특성에 대한 실험적 고찰 (An Experimental Study on Noise Characteristics of Fuel Pump System)

  • 사종성;강태원
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.612-617
    • /
    • 2011
  • The comfort and quietness of vehicle has been improved greatly due to the development of technology in automobile industry. Some of noise reductions, for example, are driven by the improvement in the power-train system. Due to better in all performance, it is required to reduce more noise in automobile components. One of them is related to the fuel pump system including a pump and a tank. Therefore, this study is focused on investigating the characteristics of fuel pump and fuel tank first, and then comparing the data before and after installation of fuel pump system in a testing vehicle. Additionally, the measured data will be analyzed to identify the problems and provide knowledge to reduce the level of noise and vibration in fuel pump system.

연료탱크 슬로싱 소음 저감을 위한 배플 및 다공성 물질 설치에 따른 유동해석 연구 (A NUMERICAL STUDY ON FLOWS IN A FUEL TANK WITH BAFFLES AND POROUS MEDIA TO REDUCE SLOSHING NOISE)

  • 이상혁;허남건
    • 한국전산유체공학회지
    • /
    • 제14권2호
    • /
    • pp.68-76
    • /
    • 2009
  • The sloshing tank causes the instability of the fluid flows and the fluctuation of the impact pressure by the liquid on the tank. These flow characteristics inside the sloshing tank can generate the uncomfortable sloshing noise. In the present study, a numerical analysis for the reduction of a fuel tank sloshing noise was performed. To simulate the flow characteristics in a sloshing tank with partially filled liquid, a VOF method was used for interfacial flows by applying a momentum source term for the sloshing motion in a non-inertial reference frame. This numerical method was verified by comparing its results with the available experimental data. For the reduction of the sloshing noise, the horizontal and vertical baffles and porous media inside a sloshing tank were considered and numerically analyzed in the present study. For various installations of these baffles and porous media, the characteristics of the liquid behavior in the sloshing tank were obtained along with the impact pressure on the wall and the height of the free surface along the wall. These basic results can be used for the design of the actual vehicular fuel tank with the reduced sloshing noise.

배플을 적용한 액체연료탱크 내의 슬로싱 억제 기법 연구 (Sloshing Minimization Technique in Liquid Fuel Tank By the Use of Baffle)

  • 박기진;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.917-920
    • /
    • 2003
  • The sloshing phenomenon sometimes happens to occur in a liquid fuel tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behaviors in the liquid fuel tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. Measurements of the pressure and load acting on the side surface of vibrated liquid fuel tank are carried in order to identify the effects of sloshing phenomenon by using various types of baffles. The results show that the baffles can be used to minimize the sloshing phenomenon in liquid fuel tank effectively

  • PDF

KSR-III 로켓의 액체 연료 탱크 내에서 발생하는 슬로싱 현상의 배플에 의한 감쇄율 측정 (Measurement of Damping Ratio of Fuel Sloshing in a Baffled Liquid Propellant Tank of KSR-III Rocket)

  • 박순홍;유준태;이영무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.172-175
    • /
    • 2002
  • Sloshing of fuel in a liquid propellant tank is an important part of the dynamic and the stability analysis of the rocket. Baffles are installed in a propellant tank to reduce the instability due to sloshing. Multi degree of spring-mass-damper model was used to model sloshing of fuel in an axisymmetric tank. The natural frequencies and damping ratios are estimated. In order to verify the estimated natural frequencies and damping ratios, tests are performed for the real propellant tank of KSR-III with single ring baffle. Results of fuel sloshing analysis are compared with those of tests.

  • PDF