• 제목/요약/키워드: Fuel spray

검색결과 1,011건 처리시간 0.027초

X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석 (Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging)

  • 배규한;문석수
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

벽면 형상에 따른 중공 원추형 분무의 벽 충돌 과정 모델링 (Modeling of Wall Impingement Process of Hollow-Cone Fuel Spray according to Wall Geometry)

  • 심영삼;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3467-3472
    • /
    • 2007
  • The effects of the wall geometry on the spray-wall impingement process of a hollow-cone fuel spray emerging from a high-pressure swirl injector of the Gasoline Direct Injection (GDI) engine were investigated by means of a numerical method. The ized Instability Sheet Atomization (LISA) & Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model for spray atomization process and the Gosman model were applied to model the atomization and wall impingement process of the spray. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental ones by the Laser Induced Exciplex Fluorescence (LIEF) technique. It was found that the radial distance of the cavity angle of 90$^{circ]$ after wall impingement was the shortest and the ring shaped vortex was generated near the wall after spray-wall impingement process.

  • PDF

직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구 (An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature)

  • 이성욱;박기영;김종민;박봉규
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

다공 스로틀 밸브에서의 액체 연료의 2차 미립화 특성에 관한 연구 (A Study on the Secondary Atomization Characteristics of Liquid Fuel in the Perforated Throttle Valve)

  • 이창식;이기형;조병옥;오군섭
    • 한국분무공학회지
    • /
    • 제1권1호
    • /
    • pp.55-62
    • /
    • 1996
  • In a fuel injection engine, atomization of liquid fuel and mixture formation process has influenced(or affected) directly on the engine performance and pollutant emission. In this study, the characteristics of fuel spray and the behaviors of secondary atomization developed at the downstream of the valves were investigated using an image processing method. Solid and perforated valves are chosen in order to evaluate the valve performance in terns of air flow rate, valve opening angle and valve shape. Experimental results clearly indicate that the spray atomization quality can be improved by increasing the perforated rat io and the blockage rat io in the perforated valve, the characteristics of spray atomization is improved by using the perforated valve with high perforated rat io and blockage ratio.

  • PDF

에멀젼 연료를 이용한 디젤엔진의 분무 및 배기특성 연구 (Spray Charaeteristics and Exhaust Emission Tests far a Diesel Engine Using Emulsified Fuels)

  • 서희준;오승묵;허환일
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.60-68
    • /
    • 2002
  • Experiments have been conducted to investigate the effects of emulsified fuels on the spray characteristics and exhaust emissions in a diesel engine. Four different fuels were examined : diesel, emulsified fuels with water contents which were varied with 13, 15, and l7wt%. Characteristics of fuel spray were measured by an optical method, PLLIF(planar liquid laser induced fluorescence). Compared to diesel fuel, emulsified fuels which had relatively high kinematic viscosity showed smaller spray angle and longer spray tip penetration. The qualitative droplet distributions of emulsified fuels showed worse atomization process than that of diesel fuel. As the water contents were increased, PM and NOx could be reduced simultaneously. It was specially noted that the emulsified fuel with l7wt% water content was found to be the best in reducing rates, NOx 30% and PM 40%.

회전연료노즐 형상변경에 따른 분무특성 (Spray Characteristics of the Rotating Fuel Nozzle with Orifice Geometry)

  • 장성호;최현경;이동훈;유경원;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.240-243
    • /
    • 2008
  • 회전식 연료 노즐의 분무특성을 알기 위해서 고속회전 시험장치를 이용하여 실험적 연구를 수행하였다. 시험장치는 연료공급장치, 고속 회전장치 그리고 아크릴 케이스로 구성되어있다. Injection orifice의 직경 및 개수를 변화시켜가며 분무실험을 수행하였다. 액적의 크기 및 속도는 PDPA(Phase Doppler Particle Analyzer)시스템을 이용하여 측정하였다. 실험결과로부터 Injection orifice의 직경 및 개수변화에 따른 회전식 노즐의 분무특성을 이해 할 수 있었다.

  • PDF

전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구 (A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System)

  • 장세호;안수길
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

직접분사식 가솔린 기관에서 흡입유동이 고압 11공 연료분사기의 분무형상에 미치는 영향 (The Effect of the Intake Flow on the Spray Structure of a High Pressure 11-Hole Fuel Injector in a DISI Engine)

  • 김성수
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.722-727
    • /
    • 2009
  • The effect of the intake flow on the spray structure of a high pressure 11-hole fuel injector were examined in a single cylinder optical direct injection spark ignition (DISI) engine. The effects of injection timing and in-cylinder charge motion were investigated using the 2-dimensional Mie scattering technique. It was confirmed that in the homogeneous charge mode, the in-cylinder swirl charge motion played a major role in the fuel spray distribution during the induction stroke rather than the tumble flow. But, in the stratified charge mode, the effect of the in-cylinder charge was not so large that the injected spray pattern was nearly maintained and the increase of in-cylinder pressure by the upward moving piston reduced the fuel spray penetration.

MPI 가솔린 기관용 인젝터의 분무 거동 및 미립화 특성에 관한 연구 (A Study on the Fuel Spray and Atomization Characteristics of MPI Gasoline Injector)

  • 서영호;이창식;이기형
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.32-39
    • /
    • 1996
  • Fuel spray in the MPI gasoline injector and its atomization characteristics are investigated with both macroscopic and microscopic visualization systems. The Bosch injector is inserted into an air-assist spray adapter which is designed to be fabricated and assembled easily. particle motion analysis system is used to measure the SMD of injector, where the assistant air pressure is varied from 0.0 to 1.5bar with fuel pressure 2.8bar. Droplet size decreased with higher air pressure and fine fuel spray with below $60{\mu}m$ of SMD is acquired at the assistant air pressure over 0.5bar.

  • PDF

커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구 (A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System)

  • 김웅일;우승철;이창식;이기형
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.