• 제목/요약/키워드: Fuel rail

검색결과 282건 처리시간 0.024초

천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가 (Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System)

  • 김형구;권순태;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

초음파 조사 디젤유 적용 커먼레일 디젤기관 특성에 관한 연구 (Study on the Characteristics of Common-rail Diesel Engine with Ultrasoniccally Irradiated Diesel Fuel)

  • 임석연;정영철;조성철;류정인
    • 한국분무공학회지
    • /
    • 제11권2호
    • /
    • pp.69-74
    • /
    • 2006
  • This is an experimental study on the performance characteristics and combustion characteristics of common-rail type diesel engine by using ultrasonic energy. It is carried out engine performance by engine dynamometer test and combustion characteristics using ultrasonically irradiated diesel fuel in comparison with using conventional diesel fuel. In analyzing the experiments of these results generally, these are obtained as follows. There is an affirmative effect on the side of the improvement of power and the reduction of smoke by applying the ultrasonically irradiated diesel fuel to the common rail engine. But there is less effect on the side of improvement of BSFC.

  • PDF

커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발 (Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems)

  • 정수진;박정권;오세두;이기수;임옥택;표영덕
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

커먼레일 연료분사 시스템을 장착한 경량 DME 트럭의 연구 및 개발 (Research and Development of a Light-Duty DME Truck Using Common Rail Fuel Injection Systems)

  • 정수진;전문수;박정권
    • 융복합기술연구소 논문집
    • /
    • 제2권1호
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40 MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5kgfm(based on 2,000rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

  • PDF

커먼레일 분사방식 디젤기관에서 바이오디젤유의 혼합율에 따른 성능 및 배기배출물 특성 연구 (A Study for Characteristics of Performances and Exhaust Emission on Blending Rates of Biodiesel Fuel in a Common-Rail Injection Diesel Engine)

  • 최승훈;오영택
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.5-10
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 30vol-%(max. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel.

  • PDF

HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구 (Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS)

  • 고영진
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

커먼레일 디젤엔진을 이용한 바이오디젤 연료의 연소 및 배출가스 특성 (Combustion and Emission Characteristics of Biodiesel Fuel in a Common Rail Diesel Engines)

  • 장악추;왕건흔;조행묵
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.252-258
    • /
    • 2009
  • Engine bench tests has been done on a common-rail diesel engine with bio-diesel fuel to study effects of B100 and B20 on output power, fuel consumption and emissions. Test results show that B100 and B20 could reduce PM, HC, CO emission and smoke, but power decrease, fuel consumption increase and NOx increase obviously, B100 reduce PM and DS with $50%{\sim}70%$ and $80%{\sim}85%$ compared with diesel fuel, while B20 reduce PM and DS with $25%{\sim}35%$ and $30%{\sim}40%$. NOx of B100 and B20 increase $5%{\sim}20%$ compare to diesel.

솔레노이드 타입 디젤 커먼레일 인젝터 구동을 위한 전류 파형 변화에 따른 분사 연료 압력파 특성 (A Study on Characteristics of Injected Fuel Pressure Waves of a Solenoid Type Diesel Common Rail Injector with Controlling Current Wave for Driving the Injector)

  • 김길태;이충훈
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.155-161
    • /
    • 2016
  • Injected fuel pressure waves of a common rail injector with various current profiles supplied to the injecor were measured using Bosch method. In order to drive the common rail injector, the current in the solenoid should be controlled using what is known as a peak and hold pattern, which consists of a high current level with a short time duration (peak) in the first step and a low current level with a long time duration (hold) in the subsequent step. The current profile can be shaped by swithcing an injector driving power source with the peak and hold waves. The capture, compare and PWM (CCP) pin in the microprocessor was used to generate the combined peak and hold waves. The PWM square wave generated from the CCP pin has a duty ratio of 100% for the peak current and 10% or 30% for the hold pattern. Five patterns of the current profile were generated by combining the peak and hold wave. The common rail pressure is controlled at 75, 100, and 130 MPa. As the fuel rail pressure increases, the variations of the measured fuel injection pressure wave according to the current profiles decrease.

커먼레일 디젤기관에서 바이오디젤유(BDF 5%) 적용시의 내구특성 연구 (A Study on the Characteristics for Durability with Biodiesel Fuel(BDF 5%) in a Commercial Common Rail Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.22-27
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engines are recognized as main causes of the air pollution. CRDI(common rail direct injection) diesel engine is widely used for the sake of minimization on exhaust emission. Because biodiesel fuel is a renewable and alternative fuel for diesel engine, its usability is expanded. In this study, a common rail diesel engine was run with 5% of biodiesel fuel(BDF 5%) more than 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the engine performance and exhaust emissions. The data of engine performance and exhaust emissions was sampled at 1 hour intervals for analysis. When a common rail diesel engine runs on BDF 5% for long time, power and energy consumption of the engine are similar to the case using diesel fuel. The smoke emission of BDF 5% was reduced in comparison with diesel fuel, that is, it was reduced approximately 15% at 4000rpm, and load of 90%. And, CO and $CO_2$ were reduced, too. On the other hand, NOx emission of biodiesel fuel was slightly increased about 2%, but it was almost same as a commercial diesel fuel.

저 커먼레일 압력에서 비에스테르화 바이오 디젤유의 연소특성 (Combustion Characteristic of Non-esterified Bio-diesel Oil at Lower Common Rail Pressure)

  • 이상득;고대권;정석호
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.11-17
    • /
    • 2013
  • Esterified bio-diesel oil is normally used as blend oil of 3% that and 97% diesel fuel in Korea. Since specifics of it is similar to that of diesel fuel, availability of non-esterified bio-diesel oil that has a lower expenses of manufacturing is worthy of attention. However, bio-diesel oil has a demerit which it emits typically more NOx emission than diesel fuel. In this study, characteristic tests using blending oil with 95% gas oil and 5% bio-diesel oil were achieved at lower common rail pressure in order to improve this demerit. It was noticed that non-esterified bio-diesel oil has more similar characteristics to diesel fuel than esterified bio-diesel oil and it emits more NO emission by fuel NO mechanism.