• Title/Summary/Keyword: Fuel pump motor

Search Result 59, Processing Time 0.032 seconds

Design and Analysis of the Fuel Boost Pump for the Aircraft (항공기용 연료승압펌프 설계)

  • Lee, Jung-hoon;Kim, Joon Tae
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.18-23
    • /
    • 2012
  • The fuel boost pump for the aircraft was first indigenously developed in Korea. It is one of the core component for fuel subsystem and composed of motor assembly, impeller assembly, and body assembly with BLDC motor. It shall provide some amount of fuel to engine system continuously for any flight condition considering sudden altitude change and any attitude. This paper describes the procedures and the results for the design, the integration, and the performance analysis of the fuel boost pump.

A Study on Reliability Improvement of BLDC Motor for Combat Vehicle in High Temperature Environment (고온 환경에서의 전투차량용 BLDC 모터 신뢰성 향상에 관한 연구)

  • Yoon, Hyo-Jin;Nam, Yoon-Wook;Park, Kyoung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • Combat vehicles require high levels of maneuverability, firepower, armor, and operability. A high-performance power system is required for optimal maneuverability. The fuel pump which supplies fuel stably is very important to achieve this. The fuel pump consists of a pump part, a motor part, and a control part. It is equipped with a BLDC motor. Numerous failures of the fuel pump occurred during vehicle operation when exposed to vibration, shock, and high temperature. The cause of failure was confirmed to be stator slip of the BLDC motor. Stator slip is a consequence of the interference loss between the stator and the housing of the motor part in an high temperature environment. The failure of the fuel pump was solved through size control of the motor housing and the stator. We performed vibration testing at high temperature for verification. This study contributes to improving the reliability of combat vehicles.

Sensorless Starting Method and Fuel Pressure Control of BLDC Motor for Fuel Pump of Vehicle (자동차 연료 펌프용 BLDC 모터의 센서리스 기동 및 연료 압력 제어)

  • Chang, Jin-Wook;Yoon, Duck-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • High efficiency operation is required for motors of vehicle to increase fuel efficiency due to the regulation of exhaust gas. This paper presents a control method of fuel pressure to increase fuel efficiency and a sensorless control method of BLDC motor to get higher efficiency than conventional brushed DC motor. Initial rotor position of BLDC motor is detected from current value that is occurred by test voltage pulse and rotor is accelerated by defined sequence to enter sensorless operation mode. The algorithm to control flow rate of fuel pump uses PI controller that is control motor speed to maintain the target fuel pressure commanded by ECU.

A Study on the Forging Process Development of the Commutator of an Automotive fuel Pump (자동차용 연료펌프모터 정류자의 단조공정 개발에 관한 연구)

  • 서명규;정호승;조종래;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.149-153
    • /
    • 2002
  • The commutator of an automotive fuel pump motorhas been produced through various processes such as forging, segmenting, and assembling. And the conventional method producing the commutator of an automotive fuel pump motor is not appropriate for saving material and cost, because it makes each segment separated one by one. Therefore a new process design is required in order to avoid the assembling process. In this study, a new process design of the commutator has been carried out to save material and manufacturing time by FE analysis. In the FE analysis, three forging processes are proposed for producing copper(ASTM C11000) commutator of an automotive fuel pump motor. And forging experiments are performed to make an unsegmented commutator in order to verify the theoretically proposed process. And then, in order to get the final product the forged commutator is passed through various postprocessing such as machining, bending, resin forming, and shearing process. From the experimental result the forging process proposed from the FE analysis is verified to be an economical method for producing the commutator for an automotive fuel pump motor.

  • PDF

A Study of Fuel Pump Durability on the Bio-ethanol for FFV(Flexible Fuel Vehicle) System (바이오에탄올 연료에 대한 FFV(Flexible Fuel Vehicle)용 연료펌프모터의 내구성에 관한 연구)

  • Kim, Chang-Soo;Kwak, Dong-Ho;Jung, Byung-Jun;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.107-112
    • /
    • 2011
  • FFV(Flexible Fuel Vehicle) is the vehicle that can be used liberally from gasoline to E100(Ethanol 100%) for fuel. Recently, interest in the bio-fuel is increased by the environmental factors like exhaustion of the fossil fuel and ruduction of greenhouse gases. For the reason, adopting of FFV is activated in the world including North and South America. In general, bio-ethanol has highly corrosive substance in compare with gasoline. In the part of fuel system, corrosion can make a safety problem in case of fuel leakage and engine starting problem. So the fuel system of FFV have to be made of high corrosion-resistant materials. This study examined the effect of bio-ethanol on the durability properties according to component materials in FFV fuel pump motor and regulator using the High Temperature Fuel Circulation Test.

A Study on the Design and Analysis of the Fuel Boost Pump Motor Assembly for an Aircraft (항공기용 연료승압펌프 모터 조립체 설계에 대한 연구)

  • Lee, Jung-hoon;Kim, Joon-tae
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • The fuel pump, which is used for an aircraft, was first developed in Korea through the Civil-Military Dual Components Development Program. The BLDC motor type, which is superior to the DC brush motor when considering efficiency, endurance, and explosive environmental characteristics, was applied to the fuel pump given its capacity and operating condition. The magnetic flux of the permanent magnet was analyzed based on the magnet flux density equation, using the Maxwell equation and the environmental condition. The motor performance, according to the load, was analyzed using the finite element method in order to design validation. The motor assembly was developed by designing the motor drive and the EMI filters. The performance test results of the motor assembly for the fuel boost pump were consistent with the analysis.

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

Size and Shape Optimization of the Oil Pump for Fuel Consuming Reduction (엔진 연비 향상을 위한 오일펌프 사이즈/형상 최적화)

  • Jo, Sok-Hyun;Nam, Kyung-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Generally block imbedded type oil pump is adopted to make a small engine. In this paper 1D/3D numerical simulations were conducted to reduce energy consumption of the block imbedded type oil pump. At each stage of engine development we have estimated the oil flow rate and pressure to optimize oil pump sizes by using the 1D system analysis and then accomplished 3D CFD(Computational Fluid Dynamics) simulations to optimize oil pump shapes including inlet/outlet port. As a result, the energy consumption of oil pump has been reduced to nearly 27% and the engine fuel consumption to $1{\sim}1.5%$.

Control Techniques of Sensorless BLDC Motor Drive for a Vehicle Fuel Pump Application (자동차 연료펌프용 BLDC 전동기구동의 센서리스 제어기법)

  • Tran, Quang-Vinh;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1858-1864
    • /
    • 2011
  • This paper suggests a control technique of the sensorless brushless DC (BLDC) motor drive for a vehicle fuel pump application. The sensorless technique based on a comparator and a potential start-up method with high starting torque are proposed. The comparator is used to generate the commutation signals in phase with the three-phase back-EMFs. The rotor position is aligned at standstill for maximum starting torque without an additional sensor and any information of motor parameters. Also, the stator current can be easily adjusted by modulating the pulse width of the switching devices during alignment. Some experiments are implemented on a single chip 16-bit DSP controller to demonstrate the feasibility of the sensorless techniques.

Automatic Quality Control of Fuel Pump Motor Using Vibration Analysis (연료펌프 모터의 진동품질관리 자동화)

  • Lee J.K.;Park B.S.;Yoon J.S.;Kang E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.303-304
    • /
    • 2006
  • In this work, we developed an equipment for automatic quality control of fuel pump motor using vibration analysis. The equipment automatically performs a series of tasks such as aligning and conveying the motor, attachment/detachment of an accelerometer, data acquisition, vibration analysis, and classification, etc. Compared to previous manual operations, the developed system is able to provide considerable savings in both time and cost.

  • PDF