• Title/Summary/Keyword: Fuel property

Search Result 378, Processing Time 0.026 seconds

Automotive Rim Manufacturing using Flow Forming (유동성형을 이용한 자동차 림 가공)

  • Oh, J.H.;Kim, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.379-381
    • /
    • 2009
  • In designing full vehicle, crash safety, fuel efficiency, exhaust gas, and driving stability are very important factors. Especially, automotive wheel which supports total vehicle weight is a critical component in view of driving stability. Most of automotive wheel have been manufactured for beautiful appearance by using aluminum alloy in domestic industry. However, the amount of automotive steel wheel used are on an increasing trend according to developing the advanced high strength steel with good formability property recently. In this study, the circumferential deviation of rim with various thickness and yield strength was investigated. The formability evaluation of the rim was developed by using a finite element module furnished by Forge software.

  • PDF

A Experimental Study on the Arson Fire Characteristics (방화(放火)화재 특성에 관한 실험적 연구)

  • Choi, Jin;Kwon, Oh-Seung;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This Study is to analyze the characteristics of arson fire under fire dynamics to protect people and property from arson fire which has been radically increased with the development of the Korean economy. Assembly and merchandise purposes such as theater, retail, and exhibition has been performed as the arson fire study. The experiment for this study is based on the analysis of the characteristic for its own combustion process and smoke spread when arson fire occurs. This study presents the analysis through comparing the condition of setting fire using liquid fuel such as thinner on purpose to the condition of setting fire naturally depending on each occupancy.

Determining Economic Speed for Green Freight Train (저탄소 화물열차를 위한 경제속도 결정에 관한 연구)

  • Kim, Kwang-Tae;Choi, Won-Suk;Kim, Young-Hoon;Lee, Sun-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.461-464
    • /
    • 2011
  • Rail transport has been considered as an environmental-friendly transport mode compared with other transport modes such as ship, truck, and aircraft. However, rail industry can not avoid a duty of alleviating Greenhouse gases emission owing to the Korean government polices for green growth which is an economic paradigm that simultaneously pursues growth and environmental improvement. The purpose of this research is to develop a methodology of determining an economic speed of freight train to be green freight train by considering fuel cost, environmental cost, and time cost. In the methodology, we first define a cost function based on cost factors and then suggest an economic speed of freight train by deriving a property.

  • PDF

Effect of Silicone-modified Microsilica Content on Electrical and Mechanical Properties of Cycloaliphatic Epoxy/Microsilica System

  • Park, Jae-Jun;Yoon, Chan-Young;Lee, Jae-Young;Cheong, Jong-Hoon;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.155-158
    • /
    • 2016
  • The effect of microsilica content modified with silicone-modified epoxy on electrical and mechanical properties of cycloaliphatic epoxy/microsilica system was investigated. The cycloaliphatic epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was an anhydride. Surface of microsilica was modified with silicone-modified epoxy. Electrical breakdown strength, the most important property for electrical insulation materials was tested. Tensile and flexural tests were also performed using universal testing machine (UTM). The microcomposite with 60 wt% microsilica shows maximum values in electrical breakdown strength.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

Effects of Heat Treatment on Hydroformability of Aluminum Tubes (알루미늄 튜브의 열처리 조건에 따른 액압 성형성 연구)

  • Lee M. Y.;Sohn S. M.;Jo Y. J.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.364-367
    • /
    • 2001
  • Recently social demands of fuel economy and environmental regulation require the development of light materials and new manufacturing technologies. In this point, aluminum tube hydroforming, which is satisfied with good strength-to-weight ratio and recyclability, is new innovative concept. but, up to now the level of that is relatively low. In this paper, we studied formability of different aluminum tubes in different heat treatments under internal pressure and axial feeding, and mechanical properties of aluminum tubes before and after hydroforming.

  • PDF

Hydrogen Evolution Properties of Alanate-based Hydrogen Storage Materials (알라네이트 계 수소 저장 물질의 수소 방출 특성)

  • JEONG, HEONDO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2017
  • Alanate-based materials, which were known to have high hydrogen storage capacity, were synthesized by mechanochemically metathesis reaction of metal chloride and sodium alanate without solvent. XRD patterns of synthesized materials showed that metathesis reaction of cations between metal chloride and sodium alanate was progressed favorably without any solvent. Magnesium alanate showed that 3.2 wt.% of hydrogen was evolved by the thermal decomposition. The addition of a small amount of Ti to the magnesium alanate greatly reduced hydrogen evolution temperature. Also, Ti doped magnesium alanate had a good regeneration property. Both the calcium and lithium-magnesium alanate showed the lower starting temperature of the two step hydrogen evolution and fast kinetics for the hydrogen evolution.

Calculation of Equivalent Feeder Geometries for CANDU Transient Simulations

  • Cho, Seungyon;Muzumdar, Ajit
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.429-436
    • /
    • 1995
  • This paper describes a methodology for determination of representative CANDU feeder geometry and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this methodology and helps perform a calculation of equivalent feeder geometry for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data pressure, quality, density) at inlet/outlet header. The equivalent feeder geometry calculated based on this methodology will be useful fur the transient thermohydraulic analysis of the primary heat transport system for the CANDU heavy water-cooled pressure tube reactor.

  • PDF

Development of Composite Bipolar Plate for PEMFC (고분자 전해질 연료전지용 복합수지 분리판 개발)

  • Kang, Hyun-Min;Han, In-Su;Lim, Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.3-7
    • /
    • 2007
  • Graphite/polymer composite bipolar plates for PEMFC are successfully developed, and their typical properties are superior to commercially available ones. Thermal property of the developed bipolar plate was evaluated by dynamic mechanical analyzer, and the results were compared to commercial ones. The specimens were immersed into the deionized water bath at $80^{\circ}$... for 1500hrs to evaluate dimensional stability and durability. Dimension, weight of the specimens as well as extraction conductivity was measured as each 500hrs. Fully molded bipolar plates without any machining or milling were also prepared using a specially developed mold, and they were applied to the fuel cell performance test. Results were compared to the machined commercial bipolar plate.

  • PDF