• 제목/요약/키워드: Fuel pin

검색결과 115건 처리시간 0.322초

Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) with PBO Reflector

  • Kim, Chihyung;Hartanto, Donny;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.351-359
    • /
    • 2016
  • The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

Effect of PT/CT contact on the circumferential temperature distribution over a fully voided nuclear channel of IPHWR

  • Sharma, Mukesh;Kumar, Ravi;Majumdar, Prasanna;Mukhopadhyay, Deb
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1314-1321
    • /
    • 2019
  • In case of multiple failure scenario, such as LOCA with ECCS failure, the decay heat continues to raise the reactor core temperature, eventually leading to the core voiding. In such scenario the convective heat transfer becomes poor and the majority of the heat transfer from fuel bundle takes place by radiation mode. During this abnormal working condition, if the channel pressure is less than 1 MPa, the PT sags and come in contact with the CT. This results in high rate of heat transfer from contact location to moderator. The present paper aims to capture the temperature profile over a simulated nuclear channel during such scenario at a steady state temperature of $600^{\circ}C$ (Centre pin) at two different configurations of PT i.e. PT concentric with CT and PT contact with CT. The results showed that the bottom nodes of all the components (Fuel bundle, PT and CT) of the simulated channel was greatly influenced by the PT/CT contact. Moreover, higher temperature were observed at top nodes of the PT and outer pins of the fuel bundle. However, no significant variation in temperatures were obtained in fuel bundle and CT in concentric condition.

Development and validation of fuel stub motion model for the disrupted core of a sodium-cooled fast reactor

  • Kawada, Kenichi;Suzuki, Tohru
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3930-3943
    • /
    • 2021
  • To improve the capability of the SAS4A code, which simulates the initiating phase of core disruptive accidents for MOX-fueled Sodium-cooled Fast Reactors (SFRs), the authors have investigated in detail the physical phenomena under unprotected loss-of-flow (ULOF) conditions in a previous paper (Kawada and Suzuki, 2020) [1]. As the conclusion of the last article, fuel stub motion, in which the residual fuel pellets would move toward the core central region after fuel pin disruption, was identified as one of the key phenomena to be appropriately simulated for the initiating phase of ULOF. In the present paper, based on the analysis of the experimental data, the behaviors related to the stub motion were evaluated and quantified by the author from scratch. A simple model describing fuel stub motion, which was not modeled in the previous SAS4A code, was newly proposed. The applicability of the proposed model was validated through a series of analyses for the CABRI experiments, by which the stub motion would be represented with reasonable conservativeness for the reactivity evaluation of disrupted core.

원자로 내부 구조물 초음파검사 현황 (Ultrasonic Inspection of RPV Internal Structures)

  • 심철무;최하림
    • 비파괴검사학회지
    • /
    • 제16권1호
    • /
    • pp.46-51
    • /
    • 1996
  • 원자로는 압력용기 및 내부 구조물로 구분되어 있다. 내부 구조물들의 경련 열화 현상에 따라 결함이 많이 발생하여 이에 대한 초음파검사가 요구되고 있다. 따라서 원자로 내부 구조물에 대한 초음파검사 현황 및 각각 구조물들의 검사 원리를 기술하였다. 특히 원자로 내부 구조물 중 CRDM, core baffle bolt, core barrel bolt, CRGT-support pin 및 fuel alignment pin에 대한 유럽 및 독일을 중심으로 한 검사 현황 및 검사방법을 간략하게 기술하였다. 이 기술에 대한 지침안(guideline)이 독일, 프랑스, 일본을 중심으로 하여 마련되고 있다.

  • PDF

Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • L. Luzzi;T. Barani;B. Boer;A. Del Nevo;M. Lainet;S. Lemehov;A. Magni;V. Marelle;B. Michel;D. Pizzocri;A. Schubert;P. Van Uffelen;M. Bertolus
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.884-894
    • /
    • 2023
  • Design and safety assessment of fuel pins for application in innovative Generation IV fast reactors calls for a dedicated nuclear fuel modelling and for the extension of the fuel performance code capabilities to the envisaged materials and irradiation conditions. In the INSPYRE Project, comprehensive and physics-based models for the thermal-mechanical properties of U-Pu mixed-oxide (MOX) fuels and for fission gas behaviour were developed and implemented in the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. As a follow-up to the assessment of the reference code versions ("pre-INSPYRE", NET 53 (2021) 3367-3378), this work presents the integral validation and benchmark of the code versions extended in INSPYRE ("post-INSPYRE") against two pins from the SUPERFACT-1 fast reactor irradiation experiment. The post-INSPYRE simulation results are compared to the available integral and local data from post-irradiation examinations, and benchmarked on the evolution during irradiation of quantities of engineering interest (e.g., fuel central temperature, fission gas release). The comparison with the pre-INSPYRE results is reported to evaluate the impact of the novel models on the predicted pin performance. The outcome represents a step forward towards the description of fuel behaviour in fast reactor irradiation conditions, and allows the identification of the main remaining gaps.

A MIXED CORE FOR SUPERCRITICAL WATER-COOLED REACTORS

  • Cheng, Xu;Liu, Xiao-Jing;Yang, Yan-Hua
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.117-126
    • /
    • 2008
  • In this paper, a new reactor core design is proposed on the basis of a mixed core concept consisting of a thermal zone and a fast zone. The geometric structure of the fuel assembly of the thermal zone is similar to that of a conventional thermal supercritical water-cooled reactor(SCWR) core with two fuel pin rows between the moderator channels. In spite of the counter-current flow mode, the co-current flow mode is used to simplify the design of the reactor core and the fuel assembly. The water temperature at the exit of the thermal zone is much lower than the water temperature at the outlet of the pressure vessel. This lower temperature reduces the maximum cladding temperature of the thermal zone. Furthermore, due to the high velocity of the fast zone, a wider lattice can be used in the fuel assembly and the nonuniformity of the local heat transfer can be minimized. This mixed core, which combines the merits of some existing thermal SCWR cores and fast SCWR cores, is proposed for further detailed analysis.

Numerical investigation on vortex behavior in wire-wrapped fuel assembly for a sodium fast reactor

  • Song, Min Seop;Jeong, Jae Ho;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.665-675
    • /
    • 2019
  • The wire-wrapped fuel bundle is an assembly design in a sodium-cooled fast reactor. A wire spacer is used to maintain a constant gap between rods and to enhance the mixing of coolants. The wire makes the flow complicated by creating a sweeping flow and vortex flow. The vortex affects the flow field and heat transfer inside the subchannels. However, studies on vortices in this geometry are limited. The purpose of this research is to investigate the vortex flow created in the wire-wrapped fuel bundle. For analysis, a RANS-based numerical analysis was conducted for a 37-pin geometry. The sensitivity study shows that simulation with the shear stress transport model is appropriate. For the case of Re of 37,100, the mechanisms of onset, periodicity, and rotational direction were analyzed. The vortex structures were reconstructed in a three-dimensional space. Vortices were periodically created in the interior subchannel three times for one wire rotation. In the edge subchannel, the largest vortex occurred. This large vortex structure blocked the swirl flow in the peripheral region. The small vortex formed in the corner subchannel was negligible. The results can help in understanding the flow field inside subchannels with sweeping flow and vortex structures.

Verification of a novel fuel burnup algorithm in the RAPID code system based on Serpent-2 simulation of the TRIGA Mark II research reactor

  • Anze Pungercic;Valerio Mascolino ;Alireza Haghighat;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3732-3753
    • /
    • 2023
  • The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.