DOI QR코드

DOI QR Code

Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

  • L. Luzzi (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • T. Barani (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • B. Boer (Belgian Nuclear Research Centre SCK.CEN) ;
  • A. Del Nevo (ENEA, FSN-ING-SIS, CR Brasimone) ;
  • M. Lainet (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • S. Lemehov (Belgian Nuclear Research Centre SCK.CEN) ;
  • A. Magni (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • V. Marelle (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • B. Michel (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC) ;
  • D. Pizzocri (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • A. Schubert (European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security) ;
  • P. Van Uffelen (European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security) ;
  • M. Bertolus (Commissariat a l'Energie Atomique et aux Energies Alternatives, CEA DEC/SESC)
  • Received : 2022.07.29
  • Accepted : 2022.10.27
  • Published : 2023.03.25

Abstract

Design and safety assessment of fuel pins for application in innovative Generation IV fast reactors calls for a dedicated nuclear fuel modelling and for the extension of the fuel performance code capabilities to the envisaged materials and irradiation conditions. In the INSPYRE Project, comprehensive and physics-based models for the thermal-mechanical properties of U-Pu mixed-oxide (MOX) fuels and for fission gas behaviour were developed and implemented in the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. As a follow-up to the assessment of the reference code versions ("pre-INSPYRE", NET 53 (2021) 3367-3378), this work presents the integral validation and benchmark of the code versions extended in INSPYRE ("post-INSPYRE") against two pins from the SUPERFACT-1 fast reactor irradiation experiment. The post-INSPYRE simulation results are compared to the available integral and local data from post-irradiation examinations, and benchmarked on the evolution during irradiation of quantities of engineering interest (e.g., fuel central temperature, fission gas release). The comparison with the pre-INSPYRE results is reported to evaluate the impact of the novel models on the predicted pin performance. The outcome represents a step forward towards the description of fuel behaviour in fast reactor irradiation conditions, and allows the identification of the main remaining gaps.

Keywords

Acknowledgement

This work has received funding from the Euratom research and training programme 2014-2018 through the INSPYRE project under grant agreement No 754329.

References

  1. GIF (Generation IV International Forum), GIF R&D Outlook for Generation IV Nuclear Energy Systems - 2018 Update", 2018.
  2. GIF (Generation IV International Forum), "Annual Report 2020", 2020.
  3. A.E. Waltar, D.R. Todd, P.V. Tsvetkov, Fast Spectrum Reactors, Springer, 2012.
  4. L. Luzzi, A. Cammi, V. Di Marcello, S. Lorenzi, D. Pizzocri, P. Van Uffelen, Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor, Nucl. Eng. Des. 277 (2014) 173-187. https://doi.org/10.1016/j.nucengdes.2014.06.032
  5. A. Magni, T. Barani, F. Belloni, B. Boer, E. Guizzardi, D. Pizzocri, A. Schubert, P. Van Uffelen, L. Luzzi, Extension and application of the TRANSURANUS code to the normal operating conditions of the MYRRHA reactor", Nucl. Eng. Des. 386 (2022), 111581.
  6. EERA-JPNM, INSPYRE - Investigations Supporting MOX Fuel Licensing in ESNII Prototype Reactors", 2017 [Online]. Available: http://www.eera-jpnm.eu/inspyre/.
  7. M. Lainet, B. Michel, J.C. Dumas, M. Pelletier, I. Ramiere, GERMINAL, a fuel performance code of the PLEIADES platform to simulate the in-pile behaviour of mixed oxide fuel pins for sodium-cooled fast reactors, J. Nucl. Mater. 516 (2019) 30-53. https://doi.org/10.1016/j.jnucmat.2018.12.030
  8. B. Michel, I. Ramiere, I. Viallard, C. Introini, M. Lainet, N. Chauvin, V. Marelle, A. Boulore, T. Helfer, R. Masson, J. Sercombe, J.C. Dumas, L. Noirot, S. Bernaud, Two fuel performance codes of the PLEIADES platform: ALCYONE and GERMINAL, in: Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, Elsevier, 2021, pp. 207-233. Chap. 9.
  9. S.E. Lemehov, F. Jutier, Y. Parthoens, B. Vos, S. Van Den Berghe, M. Verwerft, N. Nakae, MACROS benchmark calculations and analysis of fission gas release in MOX with high content of plutonium, Prog. Nucl. Energy 57 (2012) 117-124. https://doi.org/10.1016/j.pnucene.2011.12.010
  10. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (C) (1992) 295-302. https://doi.org/10.1016/0022-3115(92)90487-6
  11. European Commission, TRANSURANUS Handbook, Joint Research Centre, Karlsruhe, Germany, 2020.
  12. A. Magni, A. Del Nevo, L. Luzzi, D. Rozzia, M. Adorni, A. Schubert, P. Van Uffelen, The TRANSURANUS fuel performance code, in: Nuclear Power Plant Design and Analysis Codes - Development, Validation and Application, Elsevier, 2021, pp. 161-205. Chap. 8.
  13. J.-F. Babelot, N. Chauvin, Joint CEA/JRC Synthesis Report of the Experiment SUPERFACT 1", 1999. Report JRC-ITU-TN-99/03.
  14. L. Luzzi, T. Barani, B. Boer, L. Cognini, A. Del Nevo, M. Lainet, S. Lemehov, A. Magni, V. Marelle, B. Michel, D. Pizzocri, A. Schubert, P. Van Uffelen, M. Bertolus, Assessment of three European fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment, Nucl. Eng. Technol. 53 (2021) 3367-3378. https://doi.org/10.1016/j.net.2021.04.010
  15. P. Van Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, Incorporation and verification of models and properties in fuel performance codes, INSPYRE Deliverable D7 2 (2020).
  16. A. Magni, L. Luzzi, P. Van Uffelen, D. Staicu, P. Console Camprini, P. Del Prete, A. Del Nevo, Report on the improved models of melting temperature and thermal conductivity for MOX fuels and JOG, INSPYRE Deliverable D6 2 (2020) version 2.
  17. A. Magni, T. Barani, A. Del Nevo, D. Pizzocri, D. Staicu, P. Van Uffelen, L. Luzzi, Modelling and assessment of thermal conductivity and melting behaviour of MOX fuel for fast reactor applications, J. Nucl. Mater. 541 (2020), 152410.
  18. E. Bourasseau, C. Takoukam-Takoundjou, D. Bathellier, Atomic scale calculation of heat capacity of MOX vs. composition, INSPYRE Deliverable D1 3 (2020).
  19. D. Bathellier, M. Lainet, M. Freyss, P. Olsson, E. Bourasseau, A new heat capacity law for UO2, PuO2 and (U,Pu)O2 derived from molecular dynamics simulations and useable in fuel performance codes, J. Nucl. Mater. 549 (2021), 152877.
  20. S. Lemehov, New correlations of thermal expansion and Young's modulus based on existing literature and new data, INSPYRE Deliverable D6. 3 (2020).
  21. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020), 152042.
  22. C.T. Walker, G. Nicolaou, Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the SUPERFACT fuels, J. Nucl. Mater. 218 (2) (1995) 129-138. https://doi.org/10.1016/0022-3115(94)00649-0
  23. C. Prunier, F. Boussard, L. Koch, M. Coquerelle, Some specific aspects of homogeneous Am and Np based fuels transmutation through the outcomes of the SUPERFACT experiment in Phenix fast reactor, in: Proceedings of the Global '93 International Conference, vols. 12-17, 1993. September 1993, Seattle, USA.
  24. A. Magni, L. Luzzi, D. Pizzocri, A. Schubert, P. Van Uffelen, A. Del Nevo, Modelling of thermal conductivity and melting behaviour of minor actinide-MOX fuels and assessment against experimental and molecular dynamics data, J. Nucl. Mater. 557 (2021), 153312.
  25. A. Magni, P. Van Uffelen, A. Schubert, L. Luzzi, P. Del Prete, A. Del Nevo, Improved models of melting temperature and thermal conductivity for mixed oxide fuels doped with low minor actinide contents, INSPYRE Deliverable D6.5 (2022).
  26. D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330. https://doi.org/10.1016/j.jnucmat.2018.02.024
  27. D. Pizzocri, C. Rabiti, L. Luzzi, T. Barani, P. Van Uffelen, G. Pastore, PolyPole-1: an accurate numerical algorithm for intra-granular fission gas release, J. Nucl. Mater. 478 (2016) 333-342. https://doi.org/10.1016/j.jnucmat.2016.06.028
  28. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. Van Uffelen, L. Luzzi, An effective numerical algorithm for intra-granular fission gas release during nonequilibrium trapping and resolution, J. Nucl. Mater. 509 (2018) 687-699. https://doi.org/10.1016/j.jnucmat.2018.07.030
  29. A. Cechet, S. Altieri, T. Barani, L. Cognini, S. Lorenzi, A. Magni, D. Pizzocri, L. Luzzi, A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors, Nucl. Eng. Technol. 53 (2021) 1893-1908. https://doi.org/10.1016/j.net.2020.12.001
  30. T. Barani, D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, P. Van Uffelen, Modeling high burnup structure in oxide fuels for application to fuel performance codes. Part I: high burnup structure formation, J. Nucl. Mater. 539 (2020), 152296.
  31. T. Barani, G. Pastore, A. Magni, D. Pizzocri, P. Van Uffelen, L. Luzzi, Modeling intra-granular fission gas bubble evolution and coarsening in uranium dioxide during in-pile transients, J. Nucl. Mater. 538 (2020), 152195.
  32. G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408. https://doi.org/10.1016/j.jnucmat.2014.09.077
  33. G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86. https://doi.org/10.1016/j.nucengdes.2012.12.002
  34. G. Pastore, D. Pizzocri, J.D. Hales, S.R. Novascone, R.L. Williamson, B.W. Spencer, Modeling of transient fission gas behavior in oxide fuel and application to the BISON code, in: Proc. Enlarg. Halden Program. Group Meeting, 2014. Roros, Norway.
  35. T. Barani, E. Bruschi, D. Pizzocri, G. Pastore, P. Van Uffelen, R.L. Williamson, L. Luzzi, Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110. https://doi.org/10.1016/j.jnucmat.2016.10.051
  36. L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2) (2021) 562-571. https://doi.org/10.1016/j.net.2020.07.009
  37. L. Luzzi, L. Cognini, D. Pizzocri, T. Barani, G. Pastore, A. Schubert, T. Wiss, P. Van Uffelen, Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (January) (2018) 265-271. https://doi.org/10.1016/j.nucengdes.2018.01.044
  38. L. Cognini, D. Pizzocri, T. Barani, P. Van Uffelen, A. Schubert, T. Wiss, L. Luzzi, Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244. https://doi.org/10.1016/j.nucengdes.2018.09.024
  39. R. Giorgi, A. Cechet, L. Cognini, A. Magni, D. Pizzocri, G. Zullo, A. Schubert, P. Van Uffelen, L. Luzzi, Physics-based modelling and validation of intergranular helium behaviour in SCIANTIX, Nucl. Eng. Technol. 54 (2022) 2367-2375. https://doi.org/10.1016/j.net.2022.01.012
  40. T. Barani, D. Pizzocri, F. Cappia, G. Pastore, L. Luzzi, P. Van Uffelen, Modeling high burnup structure in oxide fuels for application to fuel performance codes. Part II: porosity evolution, J. Nucl. Mater. 563 (2022), 153627.
  41. A. Magni, D. Pizzocri, L. Luzzi, M. Lainet, B. Michel, Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions, Nucl. Eng. Technol. 54 (2022) 2395-2407. https://doi.org/10.1016/j.net.2022.02.003
  42. D. Pizzocri, T. Barani, L. Luzzi, Coupling of TRANSURANUS with the SCIANTIX fission gas behaviour module, in: International Workshop "Towards Nuclear Fuel Modelling in the Various Reactor Types across Europe", 18-19 June 2019, 2019. Karlsruhe, Germany.
  43. D. Pizzocri, L. Luzzi, T. Barani, A. Magni, G. Zullo, P. Van Uffelen, Coupling of SCIANTIX and TRANSURANUS: simulation of integral irradiation experiments focusing on fission gas behaviour in light water reactor conditions, in: International Workshop "Towards Nuclear Fuel Modelling In the Various Reactor Types across Europe, 2021, 28-30 June 2021, online.
  44. V. Di Marcello, A. Schubert, J. Van De Laar, P. Van Uffelen, Extension of the TRANSURANUS plutonium redistribution model for fast reactor performance analysis, Nucl. Eng. Des. 248 (2012) 149-155. https://doi.org/10.1016/j.nucengdes.2012.03.037
  45. V. Di Marcello, V. Rondinella, A. Schubert, J. Van De Laar, P. Van Uffelen, Modelling actinide redistribution in mixed oxide fuel for sodium fast reactors, Prog. Nucl. Energy 72 (2014) 83-90. https://doi.org/10.1016/j.pnucene.2013.10.008
  46. D. Pizzocri, G. Pastore, T. Barani, E. Bruschi, L. Luzzi, P. Van Uffelen, Modelling of burst release in oxide fuel and application to the transuranus code, in: 11th International Conference on WWER Fuel Performance, Modelling and Experimental Support, vols. 15-21, 2019. September 2019, Varna, Bulgaria.
  47. F. Cappia, K. Tanaka, M. Kato, K. McClellan, J. Harp, Post-irradiation examinations of annular mixed oxide fuels with average burnup 4 and 5% FIMA, J. Nucl. Mater. 533 (2020), 152076.
  48. A. Gallais-During, F. Delage, S. Bejaoui, S. Lemehov, J. Somers, D. Freis, W. Maschek, S. Van Til, E. D'Agata, C. Sabathier, Outcomes of the PELGRIMM project on Am-bearing fuel in pelletized and spherepac forms, J. Nucl. Mater. 512 (2018) 214-226. https://doi.org/10.1016/j.jnucmat.2018.10.016
  49. Y. Philipponneau, Thermal conductivity of (U, Pu)O2-x mixed oxide fuel, J. Nucl. Mater. 188 (1992) 194-197. https://doi.org/10.1016/0022-3115(92)90470-6
  50. J.B. Ainscough, B.W. Oldfield, J.O. Ware, Isothermal grain growth kinetics in sintered UO2 pellets, J. Nucl. Mater. 49 (2) (1973) 117-128. https://doi.org/10.1016/0022-3115(73)90001-9
  51. J. Turnbull, R. White, C. Wise, The diffusion coefficient for fission gas atoms in uranium dioxide, in: Technical Committee on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions, vols. 18-22, 1989. September 1988, Preston, United Kingdom.
  52. D. Pizzocri, T. Barani, L. Cognini, L. Luzzi, A. Magni, A. Schubert, P. Van Uffelen, T. Wiss, Synthesis of the inert gas behaviour models developed in INSPYRE, INSPYRE Deliverable D6. 4 (2020).
  53. A. Claisse, P. Van Uffelen, Towards the inclusion of open fabrication porosity in a fission gas release model, J. Nucl. Mater. 466 (2015) 351-356. https://doi.org/10.1016/j.jnucmat.2015.08.022
  54. P. Chakraborty, C. Gueneau, A. Chartier, Development of a complete thermo- kinetic description of cations in the mixed oxide of uranium and plutonium, in: NuFuel-MMSNF 2019 Workshop, 4-7 November 2019, PSI Villigen, Switzerland, 2019.
  55. P. Chakraborty, C. Gueneau, A. Chartier, Development of a thermokinetic model for Pu diffusion in (U,Pu)O2", INSPYRE Deliverable D5. 1 (2020).
  56. G. Wang, L. Gu, D. Yun, Preliminary multi-physics performance analysis and design evaluation of UO2 fuel for LBE-cooled subcritical reactor of China initiative accelerator driven system, Front. Energy Res. 9 (October) (2021) 1-17. https://doi.org/10.3389/fenrg.2021.732801
  57. T. Preusser, K. Lassmann, Current status of the transient integral fuel element performance code URANUS, in: SMiRT, vol. 7, 1983, pp. 22-26. August 1983, Chicago, USA.
  58. M. Charles, M. Bruet, Gap conductance in a fuel rod: modelling of the FURET and CONTACT results, in: Specialists' Meeting on Water Reactor Fuel Element Performance Computer Modelling, 9-13 April 1984, Bowness-on-Windermere, United Kingdom, 1984.
  59. R.J. Parrish, F. Cappia, A. Aitkaliyeva, Comparison of the radial effects of burnup on fast reactor MOX fuel microstructure and solid fission products, J. Nucl. Mater. 531 (2020), 152003.
  60. F. Cappia, B.D. Miller, J.A. Aguiar, L. He, D.J. Murray, B.J. Frickey, J.D. Stanek, J.M. Harp, Electron microscopy characterization of fast reactor MOX Joint Oxyde-Gaine (JOG), J. Nucl. Mater. 531 (2020), 151964.
  61. M. Teague, B. Gorman, J. King, D. Porter, S. Hayes, Microstructural characterization of high burn-up mixed oxide fast reactor fuel, J. Nucl. Mater. 441 (1-3) (2013) 267-273. https://doi.org/10.1016/j.jnucmat.2013.05.067
  62. EERA-JPNM, GEMMA European H2020 Project", 2017 [Online]. Available: http://www.eera-jpnm.eu/gemma/.
  63. EERA-JPNM, Il Trovatore H2020 European Project, 2017 [Online]. Available: https://www.iltrovatore-h2020.eu/.
  64. European Union's Horizon 2020 Research and Innovation Programme, PuMMA H2020 European Project", 2020 [Online]. Available: https://pummah2020.eu/.
  65. European Union's Horizon 2020 Research and Innovation programme, PATRICIA - Partitioning and Transmuter Research Initiative in a Collaborative Innovation Action", 2020 [Online]. Available: https://patricia-h2020.eu/.