• Title/Summary/Keyword: Fuel marker

Search Result 11, Processing Time 0.025 seconds

Determination of Visible Marker in Petroleum Using HPLC (HPLC를 이용한 석유제품 내의 가시적 식별제 분석)

  • Lim, Young-Kwan;Kim, Dong-Kil;Yim, Eui-Soon;Shin, Seong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.306-310
    • /
    • 2010
  • Petroleum visible markers (dye) have been used to distinguish different fuel classes and to prevent illegal mixing. It is difficult to recognize the real color of visible marker when the small amount of petroleum product was mixed in another fuel oil. In this study, we determined the two wavelengths (370 nm, 645 nm) which detect all Korean petroleum visible marker using UV/Vis spectrophotometer. Then we analyzed the visible marker using high performance liquid chromatography (HPLC) in two wavelength detectors. Also, we optimized the analytic method for petroleum visible marker in illegal mixed fuel oil.

Study on the Applicability Analysis of HPLC for Fuel Marker (Unimark 1494DB) in Petroleum Products (석유제품의 식별제(Unimark 1494DB) 분석을 위한 HPLC 적용가능성 분석 연구)

  • Hwang, In-ha;Youn, Ju-min;Doe, Jin-woo;Park, Tae-seong;Kang, Hyung-kyu;Ha, Jong-han;Na, Byung-gi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1076-1084
    • /
    • 2017
  • For analyzing the qualitative and quantitative analysis of fuel marker in petroleum products, the applicability of HPLC was studied. For the qualitative analysis of fuel marker in kerosene and automotive diesel, optimal analytical conditions(ratio of mobile phase solvent, flow rate, etc) in HPLC were selected and calibration curve for quantitative analysis of fuel marker was prepared based on the result of qualitative analysis. In particular, the correlation coefficient of calibration curve in kerosene and automotive diesel was shown to be 0.999 in a certain concentration range and it could be applied to the quantitative analysis. The results of analysis using the UV/Vis spectrometer, which is the current analysis method of fuel marker, were compared with the analysis results using the HPLC. The kerosene showed a low deviation of about 7 % and the automotive diesel showed a somewhat large deviation of about 20 %.

Determination of fuel marker in petroleum products using GC-MS (GC-MS를 이용한 석유제품 중의 식별제 분석)

  • Youn, Ju Min;Doe, Jin Woo;Yim, Eui Soon;Lee, Jung Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1073-1080
    • /
    • 2018
  • There are several types of petroleum products used for the fuel oil, according to their respective quality standards, grades and usage. Depending on the degree of oil tax rate by country, even the same petroleum products will have price gap. The illegal mixing of cheap petroleum products, which are subject to the lower tax rate, with relatively expensive transportation fuel causes problems such as tax evasion, environmental pollution and vehicle breakdown. In order to prevent illicit production and mixing of these different petroleum products, a small amount of markers are legally added to specific petroleum products. In Korea, markers are introduced and used to prevent illegal activity that kerosene used as fuel for house and commercial boiler are mixed with automotive diesel fuels, and marker contents are analyzed to use UV-Vis spectrophotometer and high performance liquid chromatography (HPLC). In this study, we have developed a method to qualitatively and quantitatively determine the marker added to petroleum products by gas chromatography-mass spectrometry (GC-MS) without adding developing reagent or sample pre-treatments.

Determination of Unimark 1494DB in Petroleum using HPLC (HPLC를 이용한 석유제품 중의 식별제 Unimark 1494DB 분석)

  • Lim, Young-Kwan;Kim, DongKil;Yim, Eui Soon;Shin, Seong-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.593-598
    • /
    • 2009
  • In this study, the qualitative and quantitative analytical method for petroleum marker(Unimark 1494DB) in common diesel involved kerosene and byproduct fuel was developed using SPE pretreatment and high performance liquid chromatography. In SPE pretreatment process, the highest concentrated marker was obtained 15 minutes after addition of petroleum sample. The petroleum marker was detected with $1626.92mV{\cdot}sec$ intensity at 9.8 minutes retention time in 1 mg/L content in petrodiesel after pretreatment. Also petroleum marker was selectively identified in an acidic petroleum product which was previously difficult to be analyzed by UV-Vis Spectroscopy.

MEASUREMENT OF NUCLEAR FUEL ROD DEFORMATION USING AN IMAGE PROCESSING TECHNIQUE

  • Cho, Jai-Wan;Choi, Young-Soo;Jeong, Kyung-Min;Shin, Jung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • In this paper, a deformation measurement technology for nuclear fuel rods is proposed. The deformation measurement system includes a high-definition CMOS image sensor, a lens, a semiconductor laser line beam marker, and optical and mechanical accessories. The basic idea of the proposed deformation measurement system is to illuminate the outer surface of a fuel rod with a collimated laser line beam at an angle of 45 degrees or higher. For this method, it is assumed that a nuclear fuel rod and the optical axis of the image sensor for observing the rod are vertically composed. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of the laser line beam position on the surface of the fuel rod is imaged as a parabolic beam in the high-definition CMOS image sensor. An ellipse model is then extracted from the parabolic beam pattern. The center coordinates of the ellipse model are taken as the feature of the deformed fuel rod. The vertical offset of the feature point of the nuclear fuel rod is derived based on the displacement of the offset in the horizontal direction. Based on the experimental results for a nuclear fuel rod sample with a formation of surface crud, an inspection resolution of 50 ${\mu}m$ is achieved using the proposed method. In terms of the degree of precision, this inspection resolution is an improvement of more than 300% from a 150 ${\mu}m$ resolution, which is the conventional measurement criteria required for the deformation of neutron irradiated fuel rods.

Analysis of Jet Fuel for the Judgment of Soil Polluter (토양오염 원인자 판단을 위한 항공유 분석)

  • Lim, Young-Kwan;Jeong, Choong-Sub;Han, Kwan-Wook;Jang, Young-Ju
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • The significance of soil environment is gradually increased due to the soil and underwater contamination caused by petroleum leak accidents. It requires a high cost and long period for the purification of soil compared with other environmental matrix such as water and air. For this reason, it has been embroiled in a legal conflict to find the pollution source and charge of cleanup. In this study, we analyzed the physical properties and typical additives of jet fuel to search a method that can distinguish kerosene and jet fuel contamination. In particular, the chemical marker in kerosene was visualized by the developer and the additives in jet fuel, such as antioxidant and metal deactivator were detected by GC-MS. This study could be used to judge petroleum source at soil contaminant accident sites.

Absorbance Elevation of Orimax Blue 2N, Orimax Green 151, Quinizarin, Topasol (P-250) and Lubricant (P-8) on the Spectrophotometric Analysis of Unimark 1494 DB (식별제(Unimark 1494DB) 정량시험에서 파란색 색소(Orimax Blue 2N, Orimax Green 151), Quinizarin, 토파졸(P-250) 및 윤활유 원료(P-8)의 흡광도상승 효과)

  • Lee, Ji-Yun;Kim, Chang-Jong
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.313-321
    • /
    • 2006
  • There are three kinds of liquid petroleum marker which is extracted by the basic or acidic, and both developer. Korean marker, Unimark 1494 DB (marker) have been spectrophotometrically analysed by the determination of absorbance at 582 nm after base extraction by Unimark 1494 DB Developer C-5 (developer). Some blue dyes which have same reactive radical of marker and can be changed deep blue color in base developer extraction (BDE), may be increased absorbance at 582 nm, but dyes or markers which can be increased the absorbance, were not unclear. In this experiment, effects of three dyes or marker such as Orimax Green 151 (the mixture of CI Solvent Yellow 16 and CI Solvent Blue 70), quinizarin and Orimax Blue 2N (CI Solvent Blue 35), and two solvent such as topasol (P-250) and lubricant (P-8) on the absorbance were studied by HITACHI Recording Spectrophotometer U-3300. It shows that all of them increased absorbance at 582 nm after BDE. Absorbance at 582 nm can be showed 0.0544 by Orimax Green 151 at the concentration of 3.96 mg/l, quinizarin at the concentration of 1.38 mg/l, and Orimax Blue 2N at the concentration of 2.73 mg/l in the artificial petroleum (normal diesel oil: topasol: lubricant=2 : 4: 4), respectively. Absorbance, 0.0544 indicates that concentration of marker is 1.64 mg/l in the reference curves, respectively. And also these results can be showed that the artificial petroleum have about 10% cheep fuel such as kerosene which have marker (16.0 mg/l). Absorbance of P-250 was 0.01361-0.22842 depending upon the purchasing date, and that of P-8 was 0.05644. pH of developer was 14.83, and so this result indicates that Unimark 1494 DB is a base extractable petroleum marker, phenylazophenol (US Patent No. 5,252,106). In the BDE, the slight color of Orimax Blue 2N, Orimax Green 151 and quinizarin in artificial petroleum changed to deep bright blue color, respectively. These result indicate that the absorbance at 582 nm by BDE may be increased not only by azo, diazo, amine and ketone (anthraquinone, coumarin) dyes or markers, but also the contaminants of P-250 and P-8 which have same as reactive radical of dyes or markers.

Inspection of the Nuclear Fuel Rod Deformation using an Image Processing (영상처리를 이용한 핵연료봉의 변형 검사)

  • Cho, Jai-Wan;Choi, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a deformation measurement technology of the nuclear fuel rod is proposed. The deformation measurement system include high definition CCD or CMOS image sensor, lens, semiconductor laser line beam marker, and optical & mechanical accessories. The basic idea of the deformation measurement is to illuminate the outer surface of the fuel rod with collimated laser line beam at an angle of 45 degrees or higher. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of laser line beam position in the surface of the fuel rod is imaged as the parabolic beam in the high definition CCD or CMOS image sensor. From the parabolic beam pattern, the ellipse model is extracted. And the slope of the long and the short axis of the ellipse model is found. The crossing point between the saddle point of the parabolic beam and the long & short axis of the ellipse model is taken as the feature of the deformed fuel rod. The vertical offset between feature points before and after fuel rod deformation is calculated. From the experimental results, $50\;{\mu}m$ inspection resolution is acquired using the proposed method, which is three times enhanced than the conventional criterion ($150\;{\mu}m$) of the guide for the inspection of the nuclear fuel rod.

Characterization of Particulate Emissions from Biodiesel using High Resolution Time of Flight Aerosol Mass Spectrometer

  • Choi, Yongjoo;Choi, Jinsoo;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.78-85
    • /
    • 2015
  • In the past several decades, biofuels have emerged as candidates to help mitigate the issues of global warming, fossil fuel depletion and, in some cases, atmospheric pollution. To date, the only biofuels that have achieved any significant penetration in the global transportation sector are ethanol and biodiesel. The global consumption of biodiesel was rapidly increased from 2005. The goal of this study was to examine the chemical composition on particulate pollutant emissions from a diesel engine operating on several different biodiesels. Tests were performed on non-road diesel engine. Experiments were performed on 5 different fuel blends at 2 different engine loading conditions (50% and 75%). 5 different fuel blends were ultra-low sulfur diesel (ULSD, 100%), soy biodiesel (Blend 20% and Blend 100%) and canola biodiesel (Blend 20% and Blend 100%). The chemical properties of particulate pollutants were characterized using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Organic matter and nitrate were generally the most abundant aerosol components and exhibited maximum concentration of $1207{\mu}g/m^3$ and $30{\mu}g/m^3$, respectively. On average, the oxidized fragment families ($C_xH_yO_1{^+}$, and $C_xH_yO_z{^+}$) account for ~13% of the three family sum, while ~87% comes from the $C_xH_y{^+}$ family. The two peaks of $C_2H_3O_2$ (m/z 59.01) and $C_3H_7O$ (m/z 59.04) located at approximately m/z 59 could be used to identify atmospheric particulate matter directly to biodiesel exhaust, as distinguished from that created by petroleum diesel in the AMS data.

An Assessment of Korean Housewives Exposed to Polycyclic Aromatic Hydrocabons(PAHs) in Indoor Air (일부 주부의 실내공기 중 PAHs 노출에 관한 연구)

  • Lee, Tae-Hyung;Kim, Yun-Sin;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.323-331
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons (PAHs) are well known for strong carcinogen. However, the human exposure analysis of PAHs is quite difficult and unreliable because of hard for estimation of actual expose dose. Then urinary 1-hydroxypyrene (1-OHP) has been a biological marker of exposure to PAHs. The purpose of this study was to investigate total amount from exposure to PAHs soused by indoor occupational exposure, and residence at Seoul metropolitan area and Kyeonggi province in Korea. Thirty-five housewives were included in this study from April 2003 through February 2004. Dietary habit and general characteristics such as age, type of building, existence of passive smoking, period of residence, fuel type for heating and ventilation type were obtained by self administered questionnaire. Urine samples were collected at morning and freeze quickly. Urinary creatinine was measured for converting into 24 hr urine. Concentration of the indoor PAHs was examined by NIOSH method number 5506. Urinary 1-OHP and PAHs were analysed by HPLC. Correlation coefficient between urinary 1-OHP levels and pyrene concentration of indoor air was 0.66 and statistically significant(P<0.01). The difference of urinary 1-OHP level due to dietary habits were not significant. Urinary 1-OHP level of Spring, Summer, Autumn, and Winter were $0.21{\pm}0.12,\;0.10{\pm}0.17,\;0.16{\pm}0.12,\;0.17{\pm}0.14{\mu}g/g$ cr, respectively. The arithmetic means of urinary 1-OHP for four season tee $0.16{\pm}0.14 {\mu}g/g$ cr. There was a trend that urinary 1-OHP level of residents who dwelling in apartment were higher compared with detached home, Comparison of 1-OHP level between heating by kerosene and LPG, Much higher gas heating type than kerosene type (P<0.05). This result implies that the urinary 1-OHP can be applied as the PAHs exposure indices.