• Title/Summary/Keyword: Fuel manifold

Search Result 158, Processing Time 0.022 seconds

An Evaporative System Monitoring Method Using a Virtual HC Sensor (가상 HC 센서를 이용한 Evaporative System Monitoring 방법에 대한 연구)

  • 서진호;박재홍;윤형진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2003
  • This paper presents a new evaporative system monitoring method using a virtual HC sensor for an automotive on-board diagnosis. A development was made at providing mathematical expressions from the lambda control information to estimate the HC mass flow purged into the intake manifold from the canister for implementing a virtual HC sensor. The change of the lambda averagevalue reflected the influence of the additional fuel from purging results the sensor estimation of the purged HC amount. Based on this virtual HC sensor, a new evaporative system monitoring method was proposed comparing the amount of purged HC amount with the amount of the HC gas evaporated from the fuel tank and absorbed into the canister. Finally, the method was validated with a simulation using the data logged from the retail car.

Computer Analysis of Mathematical Model for Engine Control (엔진제어를 위한 수학적 모델의 컴퓨터 해석)

  • 김유남;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.9
    • /
    • pp.724-732
    • /
    • 1989
  • The structure of engine and its interaction are investigated and the construction of mathematical model for the performance evaluation is presented and then simulated. The total system is classified as air-fuel inlet element, intake manifold, combustion, and engine dynamics and their control function are schematically evaluated. Because of the model structure with general engine function and computer simulation of the chosen engine, physical characteristics of the corresponding engine and the engine data of normal operation state are used. According to the study, it is possible to predict the mixture rate by by the difference in the mass of fuel and air into cylinder and to evaluate and trace dynamic characteristic of operation state under various operating condition. The model characteristic under the transient operating condition makes it possible to effectively evaluate the operation of actual engine through the result of simulation.

  • PDF

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

Joining of Lanthanum Chromite and Yttria Stabilized Zirconia in Sealing of Planar Solid Oxide Fuel Cell

  • Lee, You-Kee;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.741-749
    • /
    • 1994
  • The planar solid oxide fuel cell(SOFC) contains several ceramic materials depending on its structure and has rdfractory metal parts for manifolds, shrouds and current leads. Among ceramic materials for planar SOFC, joining of lanthanum chromite separator and yttria stabilized zirconia(YSZ) electoyte in planar SOFC stack to give strong gas tight seals is necessary for satisfactory operation and high performance. Nevertheless, for planar SOFC/sub s/, how to seal the cell stack and gas manifold remains as one of the unsolved problems. Therefore, in this study. we investigated the joining of sintered lanthanum chromite and YSZ pellets using unsintered lanthanum chromite green films as sealent. Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) revealed that Ca in the sealing material diffused and dissolved into YSZ and sintered lanthanum chromite, and unsintered lanthanum chromite green films reacted with YSZ to from a new phase at the interface. Also, the densification of unsintered lanthanum chromite green films was inpeded by the Ca migration.

  • PDF

Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator (75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석)

  • Kim, Beom-Joo;Lee, Jung-Hyun;Kim, Do-Hyeong;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

The Design and Hot-firing Tests of a regenerative-cooled Sub-scale Combustor (재생냉각 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Hong-Jip;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • It was carried out hot-firing test with a regenerative-cooled sub-scale combustor which was applied regenerative-cooling, film cooling and thermal barrier coating. Test results showed that cooling methods used in the combustor play an full role in the operation of the combustor under the design condition but it is occurred high frequency combustion instability due to unsteady flow of fuel by structural support ring inserted in fuel manifold. The flow pattern of fuel was improved by excluding the ring and it will be carried out additional hot-firing test to verify the combustion stability of modified combustor.

  • PDF

System Response of Automotive PEMFC with Dynamic Modeling under Load Change (차량용 PEMFC 동적 모델을 이용한 시스템 부하 응답 특성)

  • Han, Jaeyoung;Kim, Sungsoo;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The stringent emission regulation and future shortage of fossil fuel motivate the research of alternative powertrain. In this study, a system of proton exchange membrane fuel cell has been modeled to analyze the performance of the fuel cell system for automotive application. The model is composed of the fuel cell stack, air compressor, humidifier, and intercooler, and hydrogen supply which are implemented by using the Matlab/Simulink(R). Fuel cell stack model is empirical model but the water transport model is included so that the system performance can be predicted over various humidity conditions. On the other hand, the model of air compressor is composed of motor, static air compressor, and some manifolds so that the motor dynamics and manifold dynamics can be investigated. Since the model is concentrated on the strategic operation of compressor to reduce the power consumption, other balance of components (BOP) are modeled to be static components. Since the air compressor model is empirical model which is based on curve fitting of experiments, the stack model is validated with the commercial software and the experiments. The dynamics of air compressor is investigated over unit change of system load. The results shows that the power consumption of air compressor is about 12% to 25% of stack gross power and dynamic response should be reduced to optimize the system operation.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

액체로켓엔진 축소형 고압 연소기 설계

  • Han, Yeoung-Min;Kim, Seung-Han;Seo, Seong-Hyeon;Lee, Kwang-Jin;Kim, Jong-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • The procedure of conceptual and detailed design of sub-scale combustor using bipropellant swirl or impinging injector with external or internal mixing for a liquid rocket engine are described in this paper. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has a injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl or impinging injector and 18 main swirl or impinging injectors.

  • PDF

Performance and Emission Characteristics in a Spark-Ignition LPG Engine with Exhaust Gas Recirculation (EGR 장착 스파크 점화 LPG 엔진의 성능 및 배기특성)

  • 조윤호;구준모;장진영;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.24-31
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of EGR (Exhaust Gas Recirculation) variables on performance and emission characteristics in a 2-liter 4-cylinder spark-ignition LPG fuelled engine. The effects of EGR on the reduction of thermal loading at exhaust manifold were also investigated because the reduced gas temperature is desirable for the reliability of an engine in light of both thermal efficiency and material issue of exhaust manifold. The steady-state tests show that the brake thermal efficiency increased and the brake specific fuel consumption decreased with the increase of EGR rate in hot EGR and with the decrease of EGR temperature in case of cooled EGR, while the stable combustion was maintained. The increase of EGR rate or the decrease of EGR temperature results in the reduction of NOx emission even in the increase of HC emission. Furthermore, decreasing EGR temperature by $180^{\circ}C$ enabled the reduction of exhaust gas temperature by $15^{\circ}C$ in cooled EGR test at 1600rpm/370kPa BMEP operation, and consequently the reduction of thermal load at exhaust. The optimization strategy of EGR application is to be discussed by the investigation on the effect of geometrical characteristics of EGR-supplying pipe line.