• Title/Summary/Keyword: Fuel irradiation

Search Result 290, Processing Time 0.025 seconds

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

Design of Vessel Assembly for Fuel Irradiation Test in Reactor (원자로 내 핵연료조사시험용 압력용기조립체 설계)

  • Park, Kook-Nam;Lee, Jong-Min;Chi, Dae-Young;Park, Su-Ki;Lee, Chung-Young;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.383-387
    • /
    • 2004
  • The Fuel Test Loop (FTL) consists of In-Pile Test Section (IPS) and Out-of-Pile System (OPS). The test condition in IPS such as pressure, temperature and quality of the main cooling water, can be controlled by the OPS. The FTL has been developed to be able to irradiate three pins to the core irradiation hole (IR1 hole) by considering for its utility and user's irradiation requirement. The IPS vessel assembly (IVA) consists of IPS head, outer pressure vessel, inner pressure vessel, inner assembly and test fuel carrier. The IVA is approximately 5.6 m long and fits within a 74 mm in diameter envelope over the full height of the chimney. Above the top of the chimney, the head of the IPS is enlarged to allow the closure flanges and pipe work connections. IVA was designed to test the CANDU and PWR nuclear fuel pin together. Specially, wished to minimize interference by nuclear fuel change in design and synthesize these items and shape design for IVA.

  • PDF

The flow characteristics of a Main Cooling Water System for Nuclear Fuel Test Loop Installed in HANARO (하나로 핵연료 시험루프의 주냉각수 계통 유동해석)

  • Park, Young-Chul;Lee, Young-Sub;Chi, Dai-Yong;Ahn, Seong-Ho;Kim, Yong-Ki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.444-447
    • /
    • 2008
  • A nuclear fuel test loop (after below, FTL) is installed in IR1 of an irradiation hole in HANARO for testing neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor (PWR) or a heavy water power reactor (CANDU). There is an in-pile section (IPS) and an out-pile section (OPS) in this test loop. When HANARO is normally operated, the fuel loaded in the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain an operation condition of the test fuel, a main cooling water system (MCWS) is installed in the OPS of the FTL. The pump can not continuously suck a fluid and not pressurize the fluid during a cold function test. To verify the flow characteristics of the MCWS, a flow net work analysis has been conducted. When the higher elevation pipelines wholly filled with coolant, it was confirmed through the analysis results that the pump pressurized the coolant normally. And the analysis results described the system characteristics with operation temperature and pressure variation satisfactorily.

  • PDF

VERIFICATION OF COSMOS CODE USING IN-PILE DATA OF RE-INSTRUMENTED MOX FUELS

  • Lee, Byung-Ho;Koo, Yang-Hyun;Cheon, Jin-Sik;Oh, Je-Yong;Joo, Hyung-Kook;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.242-242
    • /
    • 2002
  • Two MIMAS MaX fuel rods base-irradiated in a commercial PWR have been reinstrumented and irradiated at a test reactor. The fabrication data for two MOX roda are characterized together with base irradiation information. Both Rods were reinstrumented to be fitted with thermocouple to measure centerline temperature of fuel. One rod was equipped with pressure transducer for rod internal pressure whereas the other with cladding elongation detector. The post irradiation examinations for various items were performed to determine fuel and cladding in-pile behavior after base irradiation. By using well characterized fabrication and re-instrumentation data and power history, the fuel performance code, COSMOS, is verified with measured in-pile and PIE information. The COMaS code shows good agreement for the cladding oxidation and creep, and fission gas release when compared with PIE dad a after base irradiaton. Based on the re-instrumention information and power history measured in-pile, the COSMOS predicts re-instrumented in-pile thermal behaviour during power up-ramp and steady operation with acceptable accuracy. The rod internal pressure is also well simulated by COSMOS code. Therfore, with all the other verification by COSMOS code up to now, it can be concluded that COSMOS fuel performance code is applicable for the design and license for MaX fuel rods up to high burnup.

  • PDF

Development status of microcell UO2 pellet for accident-tolerant fuel

  • Kim, Dong-Joo;Kim, Keon Sik;Kim, Dong Seok;Oh, Jang Soo;Kim, Jong Hun;Yang, Jae Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.253-258
    • /
    • 2018
  • A microcell $UO_2$ pellet, as an accident-tolerant fuel pellet, is being developed to enhance the accident tolerance of nuclear fuels under accident conditions as well as the fuel performance under normal operation conditions. Improved capture-ability for highly radioactive and corrosive fission product (Cs and I) is the distinct feature of a ceramic microcell $UO_2$ pellet, and the enhanced pellet thermal conductivity is that of a metallic microcell $UO_2$ pellet. The fuel temperature can be effectively decreased by enhanced thermal conductivity. In this study, the material concepts of metallic and ceramic microcell $UO_2$ pellets were designed, and the fabrication process of microcell $UO_2$ pellets embodying the designed concept was developed. We successfully implemented the microcell $UO_2$ pellets and produced microcell $UO_2$ pellets. In addition, an assessment of the out-of-pile properties of a microcell $UO_2$ pellet was performed, and the in-reactor performance and behavior of the developed microcell pellets were evaluated through a Halden irradiation test. According to the expectations, the excellent performance of the microcell $UO_2$ pellets was confirmed by the online measurement data of the Halden irradiation test.

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.

Compatibility test of a non-instrumented irradiation test capsule for the HANARO test reactor (환형소결체 하나로 조사시험용 무계장 캡슐의 연구로 설치 적합성시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Chun, Tae-Hyun;Kim, Hyung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.226-229
    • /
    • 2008
  • To investigate an in-pile behavior of the newly developed DUO fuel pellet, the irradiation test will be carried out in the domestic test reactor. Irradiation test capsule for the HANARO reactor, which is a specially designed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this study, a pressure drop, a flow-induced vibration and a short-term endurance test for the newly developed non-instrumented test capsule were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin.

  • PDF

A Study on Relationship between Fuel Characteristics and Combustion Characteristics of Reformed Diesel Fuels by Ultrasonic Energy Irradiation (II) - Relationship between Chemical Structure and Cetane Number - (초음파 개질 경유의 연료특성과 연소특성의 상관관계에 관한 연구 (II) -화학구조와 세탄가의 상관성-)

  • 이병오;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.64-71
    • /
    • 2003
  • In order to analyze the effect of the chemical structure and the cetane number of reformed diesel fuels by ultrasonic energy irradiation, proton nuclear magnetic resonance spectrometer$(^1H-NMR)$ was used. From the study, following conclusive remarks can be made. 1) Branch Index(BI), aromatics percentages, and alpha methyl radical$(H_{\alpha})$ of the reformed diesel fuels by ultrasonic energy irradiation decreased more than the conventional ones. 2) All the cetane numbers which were calculated from carbon type structure and hydrogen type distribution of the reformed diesel fuels increased more than the conventional ones. 3) It is more reasonable to predict cetane number equation from carbon type structure than from hydrogen type distribution. 4) BI, aromatics percentages, and $H_{\alpha}$ on both for conventional fuel and reformed diesel fuels by ultrasonic energy irradiation are inversely proportional to cetane number fur these fuels.

Analysis of Irradiation Growth Behavior for the Zircaloy-4 Cladding used in the KOFA Fuel (국산 핵연료에 사용되는 Zircaloy-4 피복관의 조사성장 거동 해석)

  • Kim, Gi-Hang;Lee, Chan-Bok;Kim, Gyu-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.357-363
    • /
    • 1994
  • The irradiation growth of the Zircaloy-4 cladding in the KOFA fuel loaded in the Kori-2 nuclear plant was measured to evaluate the irradiation growth behavior and to be compared with that of the Siemens cladding having different manufacturing process. Due to the partial recrystallization by final heat treatment, the KOFA Zircaloy-4 cladding showed a two step irradiation growth behavior such as the growth saturation and the accerlation which is typical of the fully annealed Zircaloy cladding. The difference in the measured irradiation growth rate between the KOFA and the Siemens cladding could be explained by the difference in the cladding texture which depends on the manufacturing process. From the measured irradiation growth data of Kori-2 KOFA fuel, a two-step irradiation growth model of the KOFA Zircaloy-4 cladding was derived, the accuracy of which can be more clearly verified as the measured data of the irradiation growth are accumulated in the future.

  • PDF

Evaluation of Endcap Welding Test for a Nuclear Fuel Rod having External and Internal Tube Structure (내외부 이중튜브구조를 갖는 핵연료봉의 봉단마개 용접시험 평가)

  • Kim, Soo-Sung;Kim, Jong-Hun;Kim, Hyung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1377-1380
    • /
    • 2008
  • An irradiation test of a nuclear fuel rod having external and internal tube structure was planned for a performance. To establish fabrication process satisfying the requirements of irradiation test, micro-TIG welding system for fuel rods was developed, and preliminary welding experiments for optimizing process conditions of fuel rod was performed. Fuel rods with 15.9mm diameter and 0.57mm wall thickness of cladding tubes and end caps have been used and optimum conditions of endcap welding have been selected. In this experiment, the qualification test was performed by tensile tests, helium leak inspections, and metallography examinations to qualify the endcap welding procedure. The soundness of the welds quality of a dual cooled fuel rods has been confirmed by mechanical tests and microstructural examinations.

  • PDF