• 제목/요약/키워드: Fuel injection pressure

검색결과 710건 처리시간 0.054초

An Experimental Study on the Spray Characteristics of a Dual-Orifice Type Swirl Injector at Low Fuel Temperatures

  • Park, Byung-Sung;Kim, Ho-Young;Kim, Yongchan;Chung, Jin-Taek
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1187-1195
    • /
    • 2004
  • The objective of this study is to investigate the effects of fuel temperature on the spray characteristics of a dual-orifice type swirl injector used in a gas turbine. The major parameters affecting spray characteristics are fuel temperature and injection pressure entering into the injector. In this study, the spray characteristics of a dual-orifice type swirl injector are investigated by varying fuel temperature from - 30$^{\circ}C$ to 120$^{\circ}C$ and injection pressure from 0.29 to 0.69 ㎫. Two kinds of fuel having different surface tension and viscosity are chosen as atomizing fluids. As a result, injection instability occurs in the low fuel temperature range due to icing phenomenon and fuel property change with a decrease of fuel temperature. As the injection pressure increases, the range of kinematic viscosity for stable atomization becomes wider. The properties controlling the SMD of spray is substantially different according to the fuel temperature range.

연료레일 압력과 엔진 속도가 가스연료 시스템에 미치는 영향에 관한 연구 (A Study on the Effects of Fuel Rail Pressure and Engine Speed on Gas Fuel System)

  • 곽윤기
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.579-585
    • /
    • 2018
  • 이번 연구는 가스 연료의 연료 공급 시스템에서 분사 압력과 엔진 속도에 따른 연료 분사 특성을 확인하였다. 이번 실험에서 연료 레일 압력은 1.5에서 6.0 bar까지 1.5 bar 단위로 증가시키고, 엔진 속도는 1,000 에서 6,000 RPM으로 1000 RPM 간격으로 설정하였다. 실제 엔진 작동을 고려하여 분사 펄스폭은 각각 2.5 ms, 5.0 ms 및 13.0 ms로 설정하였으며, 이는 각각 엔진 주행상태에서 저, 중 및 고 부하 운전조건에 해당한다. 결론적으로 100cc 연료레일의 경우, 분사 압력 4.5bar에서 가장 우수한 성능을 보였고, 1000 ~ 6000RPM의 엔진 속도에서 엔진 출력을 보장하는 최소 요구 분사량 53 cc을 얻을 수 있다.

구동방식이 다른 서보유압형 인젝터의 분사응답성 연구 (Study on Injection Response of Servo-Hydraulic Injector with Different Actuation Method)

  • 권지원;정명철;이진욱
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, high-pressure injection characteristic of servo hydraulic injector as the key component of diesel CRDi system, which is driven by solenoid and piezo-actuator were examined by experimental analysis. High-pressure injection characteristic of standard diesel fuel injected at high pressure up to 160 MPa was investigated at high-pressure chamber by using a high-speed camera for spray visualization and quantitative analysis. By this study, we found that the piezo-driven injector has better performances in controlling the fuel injection with the high pressure, including fuel quantity, spray penetration length and spray velocity, than that of a solenoid-driven injector. In particular, the needle response time for start of injection in piezo-driven injector was faster of about $125{\mu}s$ than that of solenoid-driven injector. Consequently, it is known that the piezo-driven injector has more degrees of freedom in controlling the fuel injection with the high pressure than solenoid-driven injector.

공동 내부로의 평행분사방법을 이용한 초음속 연소의 실험적 연구 (Experimental Study on Supersonic Combustion with Parallel Fuel Injection Method in the Cavity)

  • 정은주;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.31-36
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Hydrogen Fuel is injected in the cavity parallel with air(or nitrogen fuel) flow. The equivalence ratios in this study are 0.132 and 0.447. Experimental measurements use OH-PLIF near the cavity and pressures in the combustor. For parallel fuel injection case, direct fuel add into cavity leads to increase of cavity pressure. And Flame exists just near the bottom wall for low equivalent ratio. There is no flame in the cavity because of no mixing in it. Compared to the inclined fuel injection, ignition delay length is longer for low equivalence ratio in both case. OH distribution is not a single line but a repeatable fluctuation flame structure by turbulence. Pressure distributions have nothing to do with the fuel injection position.

  • PDF

디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션 (Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine)

  • 김철호
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

폐식용유 바이오디젤 연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil)

  • 안상연;김웅일;이창식
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구 (Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine)

  • 이지영;최종휘;장지환;박성욱
    • 한국분무공학회지
    • /
    • 제23권1호
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

충돌분무에 의한 디젤기관의 배기 배출물 특성 (Characteristics of Exhaust Emission by Impinging Spray of Diesel Engine)

  • 진용수;김재동;김용복
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.26-31
    • /
    • 2007
  • Recently, study on the improvement of combustion performance for the diesel engine by using the impinging spray in the combustion chamber has been actively studied. The purpose of this study is to examine the variation of exhaust emission between the trial engine with impinging plate and the prototype engine in accordance with change of fuel injection timing and fuel injection pressure. The concentration of nitrogen oxide of trial engine decreased more than 50% compared to prototype engine. However, smoke of trial engine indicated very high concentration compared to prototype engine. The effect of fuel injection timing on the nitrogen oxide and smoke indicated different results, that is, the concentration of nitrogen oxide decreased as the degree of fuel injection start become slower, whereas the concentration of smoke decreased as the degree of fuel injection start become faster.

  • PDF

연료캠 형상에 따른 PLN 디젤 분사계의 분사특성에 관한 시뮬레이션 (Simulation on the Characteristics of PLN Diesel Injection System by Cam Profile)

  • 이진호;왕우경;안수길
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.42-51
    • /
    • 1997
  • In this study, in order to investigate the influence of cam profile on the injection rate, the characteristics of injection in PLN (pump - line - nozzle) diesel injection system were simulated. Six types of the profile of fuel cam were used for simulation. The maximum injection pressure and maximum injection rate of initial and end phase were analyzed to demonstrate the characteristics of injection. The mathematical model of the injection system and the computation results were verified by experimental results. Simulation results showed that the maximum injection pressure, maximum injection rate, injection quantity and pressure drop in the end phase were proportional to the velocity of fuel cam during the effective stroke.

  • PDF

공동 내부로의 평행분사방법을 이용한 초음속 연소의 실험적 연구 (Experimental Study on Supersonic Combustion with Parallel Fuel Injection Method in the Cavity)

  • 정은주;정인석
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.20-25
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Hydrogen Fuel is injected in the cavity parallel with air(or nitrogen) flow. The equivalence ratios in this study are 0.132 and 0.447. Experimental measurements use OH-PLIF near the cavity and pressures in the combustor. For parallel fuel injection case, direct fuel add into cavity leads to increase of cavity pressure. And Flame exists just near the bottom wall for low equivalent ratio. There is no flame in the cavity because of no mixing in it. Compared to the inclined fuel injection, ignition delay length is longer for low equivalence ratio in both case. OH distribution is not a single line but a repeatable fluctuation flame structure by turbulence. Pressure distributions have nothing to do with the fuel injection position.

  • PDF