• Title/Summary/Keyword: Fuel effective temperature

Search Result 270, Processing Time 0.031 seconds

Effects of Process Parameters on the Powder Characteristics of Uranium Oxide Kernel Prepared by Sol-gel Process (Sol-gel 공정을 이용한 UO2 kernel 제조에서 공정변수가 입자특성에 미치는 영향)

  • Kim, Yeon-Ku;Jeong, Kyung-Chai;Oh, Seung-Chul;Suhr, Dong-Soo;Cho, Moon-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2009
  • In this study, we investigated the unit process parameters in spherical $UO_2$ kernel preparation. Nearly perfect spherical $UO_3$ microspheres were obtained from the 0.6M of U-concentration in the broth solution, and the microstructure of the $UO_2$ kernel appeared the good results in the calcining, reducing, and sintering processes. For good sphericity, high density, suitable microstructure, and no-crack final $UO_2$ microspheres, the temperature control range in calcination process was $300{\sim}450^{\circ}C$, and the microstructure, the pore structure, and the density of $UO_2$ kernel could be controlled in this temperature range. Also, the concentration changes of the ageing solution in aging step were not effective factor in the gelation of the liquid droplets, but the temperature change of the ageing solution was very sensitive for the final ADU gel particles.

Flame and Combustion Characteristics of D.I. HCCI Diesel Engine using a Visualization Engine (가시화 엔진을 이용한 직분식 예혼합 압축착화 디젤엔진의 화염 및 연소특성)

  • 권오영;류재덕;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.100-107
    • /
    • 2002
  • Combustion characteristics of diesel engine depends on mixture formation process during Ignition delay and premixed flame region. Fuel and air mixture formation has a great influence on the exhaust emission. Therefore, the present study focused on the combustion mechanism of Homogeneous Charge Compression Ignition (HCCI) engine. This study was carried out to investigate the combustion characteristics of direct injection type HCCI engine using a visualization engine. To investigate the combustion characteristics, we measured cylinder pressure and calculated heat release rate. In addition, we investigated the flame development process by using visualization engine system. From the experimental result of HCCI engine, we observed that cool flame was always appeared in HCCI combustion and magnitude of cool flame was proportional to magnitude of hot flame. And we also found that fuel injection timing is more effective to increase lean homogeneous combustion performance than intake air temperature. Since increasing the intake air temperature improved fuel vaporization before the fuel atomizes, we concluded that increasing the temperature has disadvantage fur homogeneous premixed combustion.

Thermal Properties and Spray Characteristics of Kerosene Fuel at High Temperature and Pressure (고온고압 환경에서 케로신 연료의 물성치변화 및 분무특성연구)

  • Byeon, Yong-Woo;Son, Min;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.94-99
    • /
    • 2010
  • The object of this investigation is to study the thermal properties and spray characteristics of kerosene fuel in high temperature and pressure conditions. In order to investigate the thermal properties and spray characteristics, KIVA3 and SUPERTRAPP have been used at the same time. The thermal properties of kerosene has been calculated in high temperature and pressure condition using SUPERTRAPP. The study of spray characteristics has been conducted at both original properties of KIVA3 and calculated properties. The evaporation rate was increased in proportion to pressure when the calculated properties were used. However, the effect of pressure was not shown in the case of using original properties. So the calculated properties are more effective than original properties in high temperature and high pressure condition.

A Study on the Improvement of Distance Range for Medium Tactical Vehicle (중형전술차량의 항속거리 향상 방안 연구)

  • Lee, HyungChae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • The military has developed and operated a variety of military vehicles. Among them, medium tactical vehicles are developed as vehicles suitable for transporting troops, replacing existing military trucks, which have a significant impact on infantry forces' combat capability. Applying technology to increase fuel efficiency to these critical weapons systems, medium tactical vehicles, increases the distance range, which can reduce effective operational performance and oil costs. In this study, a measure was taken to improve the distance range of Medium Tactical Vehicles by applying an oil temperature control strategy to increase fuel efficiency.

Effect of operating temperature using Ni-Al-$ZrH_2$ anode in molten carbonate fuel cell (Ni-Al-$ZrH_2$ 연료극을 사용한 용융탄산염 연료전지의 온도의 영향)

  • Seo, Dongho;Jang, Seongcheol;Yoon, Sungpil;Nam, Suk Woo;Oh, In-Hwan;Lim, Tae-Hoon;Hong, Seong-Ahn;Han, Jonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.134-134
    • /
    • 2010
  • Fuel cell is a device that directly converts chemical energy in the form of a fuel into electrical energy by way of an electrochemical reaction. In the anode for a high temperature fuel cell, nickel or nickel alloy has been used in consideration of the cost, oxidation catalystic ability of hydrogen which is used as fuel, electron conductivity, and high temperature stability in reducing atmosphere. Most MCFC stacks currently operate at an average temperature of $650^{\circ}C$. There is some gains with decreased temperature in MCFC to diminish the electrolyte loss from evaporation and the material corrosion, which could improve the MCFC life. However, operating temperature has a strong related on a number of electrode reaction rates and ohmic losses. Baker et al. reported the effect of temperature (575 to $650^{\circ}C$). The rates of cell voltage loss were 1.4mV/$^{\circ}C$ for a reduction in temperature from 650 to $600^{\circ}C$, and 2.16mV/$^{\circ}C$ for a decrease from 600 to $575^{\circ}C$. The two major contributors responsible for the change in cell voltage with reducing operation temperature are the ohmic polarization and electrode polarization. It appears that in the temperature range of 550 to $650^{\circ}C$, about 1/3 of the total change in cell voltage with decreasing temperature is due to an increase in ohmic polarization, and the electrode polarization at the anode and cathode. In addition, the oxidation reaction of hydrogen on an ordinary nickel alloy anode in MCFC is generally considered to take place in the three phase zone, but anyway the area contributing to this reaction is limited. Therefore, in order to maintain a high performance of the fuel cell, it is necessary to keep this reaction responsible area as wide as possible, that is, it is needed to keep the porosity and specific surface area of the anode at a high level. In this study effective anodes are prepared for low temperature MCFC capable of enhancing the cell performance by using zirconium hydride at least in part of anode material.

  • PDF

Correlation between Lubrication Characteristics of Engine and Fuel Economy (엔진 윤활특성과 연비 상관성에 대한 연구)

  • Oh, JungJoon;Cha, SangYeob;Jeong, DoGon;Lee, JongJu
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2014
  • This paper presents the results of an experimental investigation of the correlation between the lubrication characteristics of an engine and its fuel economy. Improving the lubrication characteristics of the engine oil is one of the most efficient ways to improve a car's fuel economy. The methods to accomplish this include lowering the viscosity, adding a friction modifier and optimizing the shear stability index of a viscosity index improver. In addition, it is necessary to use different methods to reduce the friction to individual lubrication areas, because different lubrication regimes are used for different engine parts. The experimental investigation in this study is based on design of experiments ; this paper presents the results of a modified Sequence VID test, which is an ASTM standard test used to measure the effects of automotive engine oils on the fuel economy of passenger cars. The results demonstrate the effects of the following lubrication factors on the fuel economy : the low temperature cranking viscosity, high-temperature high shear (HTHS) viscosity, friction modifier, polymer type and shear stability index of the viscosity index improver. Moreover, this study involves an analysis of variance based on design of experiments. The test results show that the HTHS viscosity, friction modifier and shear stability index of the viscosity index improver are more effective than the other factors. Therefore, lowering the viscosity, adding a friction modifier and optimizing the shear stability index of a viscosity index improver should be considered to improve fuel economy.

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

Effect of Temperature and Contact Metals on the Thermal Stability of Tricyclodecane (온도와 접촉금속이 Tricyclodecane의 열안정성에 미치는 영향)

  • Park, Sun-Hee;Kim, Joong-Yeon;Chun, Byung-Hee;Kwon, Cheong-Hoon;Kang, Jeong-Won;Han, Jeong-Sik;Jeong, Byung-Hun;NamKoung, Hyuck-Joon;Kim, Sung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.159-162
    • /
    • 2009
  • In temperature controlled batch reactor, the effect of temperature and contact metals on the thermal stability of Exo-tricyclo[$5.2.1.0^{2,6}$]decane (tricyclodecane, exo-THDCP) were investigated by use of GC/MS. And the characteristic of metal in contact with tricyclodecane were analyzed by SEM-EDX. In fuel temperature variation test, thermal decomposition of exo-THDCP was occurred at $350^{\circ}C$. In case of fuel contact metals, Titanium was less effective to decomposition of exo-THDCP than stainless steel 304, 316.

  • PDF

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

Analysis of Standard and FLIP Fuel Mixed Loading Patterns in TRIGA Mark-III Reactor

  • Kim, Jung-Do;Lee, Jong-Tai;Yook, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.287-293
    • /
    • 1979
  • Mixed standard-FLIP fuel loading patterns in the TRIGA Mark-III reactor were analyzed. It was judged that the mixed loading pattern with the standard fuel in the B-ring and the FLIP fuel in other rings was mostly desirable in view of fuel temperature, cooling condition with the natural convection, or effective thermal flux utilization in the central thimble. In addition, tile maximum useful flux in tile reactor beamports versus the loading patterns was evaluated.

  • PDF