• Title/Summary/Keyword: Fuel conversion

Search Result 691, Processing Time 0.047 seconds

Research on the Development of the Supercritical CO2 Dual Brayton Cycle (초임계 이산화탄소 이중 브레이튼 사이클 개발 연구)

  • Baik, Young-Jin;Na, Sun Ik;Cho, Junhyun;Shin, Hyung-Ki;Lee, Gilbong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.673-679
    • /
    • 2016
  • Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee Kyong-Hwan;Roh Nam-Sun;Shin Dae-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.37-45
    • /
    • 2006
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one or important issue in recycling methods. This study was introduced over the trend or generation of plastic waste, in Korea pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy research). The characteristics of process developed in KIER are the continuous loading treatment or mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about $81\;wt\%$ liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

COMBUSTION CHARACTERISTICS OF WASTE-PYROLYSIS GASES IN AN INTERNAL COMBUSTION ENGINE

  • Shudo, T.;Nagano, T.;Kobayashi, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Wastes such as shredder dust of disposed vehicles can be decomposed into low calorific flammable gases by Pyrolysis gasification. A stationary electric Power generation using an internal combustion engine fuelled with the waste-pyrolysis gas is an effective way to ease both waste management and energy saving issues. The waste-pyrolysis gas mainly consists of H$_2$, CO, $CO_2$ and $N_2$. The composition and heating value of the gas generated depend on the conversion process and the property of the initial waste. This research analyzed the characteristics of the combustion and the exhaust emissions in a premixed charge spark ignition engine fuelled with several kinds of model gases, which were selected to simulate the pyrolysis-gases of automobile shredder dusts. The influences of the heating value and composition of the fuel were analyzed parametrically. Furthermore, optical analyses of the combustion flame were made to study the influence of the fuel's inert gas on the flame propagation.

12 Phase Multiple GTO Inverter (12상 다중 GTO 인버터)

  • Oh, Dong-Sub;Lee, Kyu-Jong;Seong, Se-Jin;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.291-294
    • /
    • 1990
  • Fuel cell system needs DC-AC conversion inverter system because its output is DC. And the inverter system can be operated not only in stand-alone load but also in interactive mode in interactive mode, it is necessary to control active-reactive power of inverter and to synchronize inverter output voltage to power line voltage. In this paper, a 12 phase multiple VSI type GTO inverter system for fuel cell is described. Synchronization between power line voltage phase and inverter output voltage phase, and reduction of harmonics in the output voltage phase are the purpose of this inverter system. This control algorithm for the system is realized by the software method utilizing 8031AH 8bit Microprocessor.

  • PDF

Computational Modelling of Droplet Dynamics Behaviour in Polymer Electrolyte Membrane Fuel Cells: A Review

  • Yong, K.W.;Ganesan, P.B.;Kazi, S.N.;Ramesh, S.;Sandaran, S.C.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.345-360
    • /
    • 2019
  • Polymer Electrolyte Membrane Fuel Cells (PEMFC) is one of the leading advanced energy conversion technology for the use in transport. It generates water droplets through the catalytic processes and dispenses the water through the gas-flowed microchannels. The droplets in the dispensing microchannel experience g-forces from different directions during the operation in transport. Therefore, this paper reviews the computational modelling topics of droplet dynamics behaviour specifically for three categories, i.e. (i) the droplet sliding down a surface, (ii) the droplet moving in a gas-flowed microchannel, and (iii) the droplet jumping upon coalescence on superhydrophobic surface; in particular for the parameters like hydrophobicity surfaces, droplet sizes, numerical methods, channel sizes, wall conditions, popular references and boundary conditions.

A Study on Combustion Characteristics of the High Pressure Diesel Engine in Closed Cycle System (폐회로 시스템에서 고압 디젤엔진의 연소특성에 관한 연구)

  • 김인교;박신배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.457-463
    • /
    • 2002
  • The closed cycle diesel engine is used in a closed circuit system which has no air breathing. The working fluid as intake mixture are consisted of oxygen, argon and recirculated exhaust gas in order to obtain underwater or underground power sources. In the present study, the high pressure diesel engine which can be operated by the closed cycle system with high intake pressure for increasing the net power rate is designed. It has been carried out to investigate the combustion characteristics of high pressure diesel engine according to the power rate. The maximum cylinder pressure and heat release rate were investigated. Also, major experimental data such as specific fuel consumption rate, oxygen concentrations, fuel conversion efficiency, polytropic exponent, and IMEP were compared with low pressure diesel engine experimental data.

A Study on Operational Concept of Solar Powered HALE UAV Using Directed-Energy (지향성 에너지를 이용한 고고도 장기체공 태양광 무인항공기 운용 개념 연구)

  • Ahn, Hyo-Jung
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.59-66
    • /
    • 2011
  • Recently, an UAV using green energy for propulsion has been developed due to exhaustion of fossil fuel. This aircraft runs on electric motors rather than internal combustion engines, with electricity coming from fuel cells, solar cells, ultracapacitors, and/or batteries. Especially solar cells are installed in HALE UAV and flight tests are performed in the stratosphere. Although the solar powered UAV has the advantage of zero emission, its energy conversion efficiency is low and operation time is limited. Therefore, the solar powered UAV has been designed to operate with the secondary battery obtaining flexibility of energy management. In this study, we suggest the new operational concept of the solar powered UAV using directed-energy rayed from the surface of earth to UAV. An UAV is able to secure additional power through attaching solar cell to the lower surface of elevator. As a result, the additional energy supplied by directed-energy can improve the energy management and operational flexibility of the solar powered UAV.

Development of 1kW Class PEFC System for Residential Power Generation (1kW급 PEFC 가정용 연료전지 시스템 실증 연구)

  • Lee, Ho-Jun;Lee, Jung-Min;Hwang, Nam-Sun;Choi, Dong-Min;Lee, Jong-Wook;Oh, Si-Doek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.17-20
    • /
    • 2008
  • HYOSUNG manufactured and tested 1kW class PEFC systems to generate electrical and thermal energy for each residential usage. In particular, HYOSUNG developed power conditioning system that performs over 91% electrical conversion ratio specified in 1kW class PEFC systems. Prior to system integration, we tested each performances of components to derive control issues from it. In addition, we have been developing the adequate simulator to describe and predict system performance. In this paper, we verified HYOSUNG's 1kW class PEFC systems are valid for residential energy sources by testing the characteristics of systems and performances of main components.

  • PDF

Effect of Co and Ni Catalyst on the Preparation of Porous Graphite Using Magadiite Template (Magadiite 주형을 이용한 다공성 흑연제조에 미치는 Co와 Ni 촉매 효과)

  • Choi, Seok-Hyon;Kwon, Oh-Yun
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.189-194
    • /
    • 2018
  • Porous graphites were synthesized by removing the template in HF after cabothermal conversion for 3 h at $900^{\circ}C$, accompanied by intercalations of pyrolyzed fuel oil (PFO) in the interlayer of Co or Ni loaded magadiite. The X-ray powder diffraction pattern of the porous graphites exhibited 00l reflections corresponding to a basal spacing of 0.7 nm. The particle morphology of the porous graphites was composed of carbon plates intergrown to form spherical nodules resembling rosettes like a magadiite template. TEM shows that the cross section of the porous graphites is composed of layers with very regular spaces. In particular, crystallization of the porous graphite was dependent on the content of Co or Ni loaded in the interlayer. The porous graphite had a surface area of $328-477m^2/g$. This indicates that metals such as Co and Ni act as catalysts that accelerate graphite formation.

A Study on Repowering of Domestic Aged Coal-fired Power Plant

  • Baek, SeHyun;Kim, YoungJoo;Kim, HyunHee;Park, SangBin;Jang, JiHoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • Recently, the public opinion is growing that the main cause of greenhouse gas, fine dust and nitrogen oxide, sulfuric acid emission is coal-fired power plant, and now the decommission or conversion to other clean fuel is being demanded. However, it is a huge national loss to decommission coal-fired power plant with remaining life, and also simple fuel converting to natural gas will lead to drastic rise on power generating cost. Therefore, this study aims to provide the analysis result about the reduction effect of $CO_2$, environment emission, and to influence to power plant performance and facilities when repowering with adding gas turbine is applied to domestic aged coal-fired power plant.