• Title/Summary/Keyword: Fuel characteristics

Search Result 4,880, Processing Time 0.032 seconds

A Study on the Flow Entrainment Characteristics of a Coaxial Nozzle Used in a MILD Combustor with the Change of Nozzle Position and Flow Condition (MILD 연소로에서 노즐의 위치와 유동 조건에 따른 유입량 특성에 관한 연구)

  • Shim, Sung-Hoon;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.103-108
    • /
    • 2012
  • A MILD (Moderate and Intense Low oxygen Dilution) combustor decreases NOx formation effectively during the combustion process and NOx formation is affected significantly by the exhaust gas entrainment rate toward fuel and air. The present study focused on the new MILD combustor, which has coaxial cylindrical tube. The outside tube of the new MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. The connection pipe is set between the outer side and the inner side tubes and coaxial air nozzle is inserted at the center of the connection pipe. A numerical analysis is accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of air nozzle exit velocity, nozzle diameter, nozzle exit position and exhaust gas side pressure. The entrainment rate is proportional to the square root of air nozzle exit velocity and negatively proportional to the pressure difference between the exhaust gas side and furnace side pressures. The effect of air nozzle exit position is not considerable on the exhaust gas entrainment.

Study of Optimization and Characteristics of PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) for IT-SOFC (중저온형 SOFC를 위한 PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) 공기극 물질의 특성 및 최적화께 관한 연구)

  • Park, Kwang-Jin;Lee, Chang-Bo;Kim, Jung-Hyun;Baek, Seung-Wook;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • [ $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ ] is a good candidate cathode material for IT-SOFC(intermediate temperature solid oxide fuel cell) because of high MIEC(mixed ionic electronic conductor) conductivity. In this study, the characteristics of PSCF3737 was investigated and optimizations of sintering temperature and thickness for $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ was carried out. Impedance responses were divided into two parts by frequency region. Middle frequency part (${\sim}10^2\;Hz$) was concerned with oxygen reduction reaction on surface and low frequency part (${\sim}10^{-1}\;Hz$) was related with oxygen diffusion. The reasonable sintering temperature and thickness of cathode were $1200^{\circ}C$ and about $27\;{\mu}m$ with regard to EIS(electrochemical impedance spectroscopy). ASR(areas specific resistance) of optimized cathode is $0.115\;{\Omega}\;cm^2$ at $700^{\circ}C$.

The Co-Combustion Characteristics of Coal and Wood Pellet in a 25W Lab-scale Circulating Fluidized Bed Reactor (25W급 순환유동층반응기에서 석탄과 우드펠릿의 혼소 특성 연구)

  • Kim, Jin Ho;Yang, Sang Yeol;Kim, Gyu Bo;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.683-691
    • /
    • 2015
  • Circulating Fluidized Bed(CFB) combustion has the several advantages which are the fuel flexibility, the economy, the efficiency and the environment. It is necessary to apply a renewable energy to produce electricity due to the Renewable Portfolio Standard(RPS) mandates recently. So, in this study, co-combustion with a coal and a wood pellet was investigated to evaluate the combustibility and the environment as function of blending ratio of them in a Lab-scale CFB reactor. To investigate the characteristics of the co-combustion, the blending ratio which is the weight of wood pellet by the total calorific value of the supplied, was considered. Bed material was a river sand(No. 7). As increasing the blending ratio, the exhausted gas emissions such as CO, NOx, HC and SOx were decreased. But in case of wood pellet over 30%, CO, HC and SOx emission were increased. And the gas temperatures at the downstream were decreased.

A Study on Performance Characteristic and Safety of Alkaline Water Electrolysis System (알카라인 수전해 시스템 성능 특성 및 안전에 관한 연구)

  • PARK, SOON-AE;LEE, EUN-KYUNG;LEE, JUNG-WOON;LEE, SEUNG-KUK;MOON, JONG-SAM;KIM, TAE-WAN;CHEON, YOUNG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.601-609
    • /
    • 2017
  • Hydrogen is a clean, endlessly produced energy and it is easy to store and transfer. So, hydrogen is regarded as next generation energy. Among various ways for hydrogen production, the way to produce hydrogen by water electrolysis can effectively respond to fossil fuel's depletion or climate change. As interest in hydrogen has increased, related research has been actively conducted in many countries. In this study, we analyzed the performance characteristics and safety of water electrolysis system. In this study, we analyzed the performance characteristics and safety of water electrolysis system. The items for safety performance evaluation of the water electrolysis system were derived through analysis of international regulations, codes, and standards on hydrogen. Also, a prototype of the overall safety performance evaluation station was designed and developed. The demonstration test was performed with a prototype $10Nm^3/h$ class water electrolysis system that operated stably under various pressure conditions while measuring the stack and system efficiency. At 0.7MPa, the efficiency of the alkaline water electrolysis stack and the system that used in this study was 76.3% and 49.8% respectively. Through the GC analysis in produced $H_2$, the $N_2$ (5,157ppm) and $O_2$ (1,646 ppm) among Ar, $O_2$, $N_2$, CO and $CO_2$ confirmed as main impurities. It can be possible that the result of this study can apply to establish the safety standards for the hydrogen production system by water electrolysis.

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA) (tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.17-24
    • /
    • 2019
  • The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.

Study on the High Frequency Heat Treatment Characteristics with the Distance between Coil and SCM440 Parts (고주파 열처리 코일과 피가열물 사이 간극에 따른 SCM440 강의 고주파 열처리 특성에 관한 연구)

  • Kim, Dae-Wan;Choi, Jee-Seok;Han, Chang-Won;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.1-7
    • /
    • 2017
  • This study investigates the high-frequency heat treatment characteristics with the distance between a coil and SCM440 parts for an automobile. Global automobile makers are focusing on research to develop high-performance automobiles with improved fuel efficiency and lower emissions in accordance with consumer demand and environmental policies. However, most research on high-frequency heat treatment has been experimental, and it is very difficult to obtain high-frequency heat treatment conditions for a specific product. Therefore, all the conditions of high-frequency heat treatment except the distance between a coil and SCM440 parts were kept the same. As a result, the optimized distance between the coil and SCM440 parts was observed to be 1-2 mm. When the distance between the coil and SCM440 parts was over 3 mm, the effective case hardness depth and total case hardness depth did not satisfy the standards.

A Study on Characteristics of an Integrated Urea-SCR Catalytic Filter System for Simultaneous Reduction of Soot and NOX Emissions in ECU Common-rail Diesel Engines (ECU 커먼레일 디젤기관에 있어서 매연 및 NOX 배출물 동시 저감용 일체형 요소-SCR 촉매필터 시스템의 특성에 관한 연구)

  • Bae, Myung-Whan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.111-120
    • /
    • 2014
  • The aim of this study is to develop an integrated urea-SCR catalytic filter system for reducing soot and $NO_X$ emissions simultaneously in diesel engines. In this study, the characteristics of exhaust emissions relative to reactive activation temperature under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with the integrated urea-SCR $MnO_2-V_2O_5-WO_3/TiO_2/SiC$ catalytic filter system operating at three kinds of engine speeds. The urea-SCR reactor is used to reduce $NO_X$ emissions, and the catalytic filter system is used to reduce soot emissions. The reactive activation temperature is very important for reacting a reducing agent with exhaust emissions. The reactive activation temperatures in this experiment is applied to 523, 573 and 623 K. The fuel is sprayed by the pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the $NO_X$ conversion rate is the highest as 83.9% at the reactive activation temperature of 523 K in all experimental conditions of engine speed and load, and the soot emissions shown by the average reduction rate of approximately 93.3% are almost decreased below 0.6% in all experimental conditions regardless of reactive activation temperatures. Also, the THC and CO emissions by oxidation reaction of Mn, V and Ti are shown in the average reduction rates of 70.3% and 38% regardless of all experimental conditions.

Material Characteristics of Smelting Slags Produced by Reproduction Experiment of Ancient Iron Smelting : According to Ca Content (고대 제철기술 복원실험에서 산출된 제련재의 칼슘함량에 따른 재료학적 특성)

  • Lee, So Dam;Cho, Nam Chul;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.33 no.4
    • /
    • pp.297-312
    • /
    • 2017
  • In the ancient iron-making process, a slag former was often added so that iron and other minerals in the ore could be smoothly separated. However, there are insufficient data for judging whether a slag former was added. Thus, in this study, we conducted a smelting experiment to understand the material characteristics of a steel structure that differed depending on the addition of a slag former. It was found that the steel structure produced in the first experiment had a total Fe content of 39.45-52.94 wt%, which decreased to 34.89-38.92 wt% in the second and third experiments. CaO compounds such as calcite, gehlenite, and hercynite appeared, in addition to iron oxides, after the addition of a slag former. As a result of an assessment of whether a slag former was added by comparing the ratio between the components, it was found that the ratio of $CaO/SiO_2$ was 0.42. From a comparative analysis of $Al_2O_3/SiO_2$ and $CaO/SiO_2$, it was judged that the ratio of $Al_2O_3$ and $SiO_2$ can be utilized as an index to judge similar systems of smelting process (ore, furnace wall, and fuel).

Characteristics of Hydrogen Production by Catalytic Pyrolysis of Plastics and Biomass (플라스틱 및 바이오매스의 촉매 열분해에 의한 수소 생성 특성)

  • Choi, Sun-Yong;Lee, Moon-Won;Hwang, Hoon;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.221-227
    • /
    • 2010
  • In this study, we consider gas generation characteristics on pyrolysis of eco-fuel which were made by mixing of Pitch Pine and Lauan sawdust as biomass and polyethylene, polypropylene, polystyrene as municipal plastic wastes with catalyst in fixed bed reactor. From the result of higher heating value(HHV) measurement and of ultimate analysis, the heating value of plastic wastes and a hydrogen content in plastic sample are higher than biomass. An activation energy was reduced by a catalyst addition. However the catalyst content influence over 5 wt% was insignificant. The yield of hydrogen from gasification of biomass containing plastic wastes such as polyethylene, polypropylene and polystyrene were obtained higher than that of sole biomass. The high temperature and mixture ratio of catalyst conditions induced to high hydrogen yield in most of the samples. As the influence of catalyst, the hydrogen yield by catalytic reaction was higher than non-catalytic reaction. We confirmed that Ni-$ZrO_2$ catalyst is more active in increasing the hydrogen yield in comparison with that of carbonate catalyst. The maximum hydrogen yield was 65.9 vol.%(Pitch Pine / polypropylene / 20 wt.% Ni-$ZrO_2$(1:9) at $900^{\circ}C$).

A Study on the Gradation Effect of the Property of Roller Compacted Concrete Pavement (골재 입도분포가 도로포장용 롤러전압 콘크리트에 미치는 영향 연구)

  • Song, Si Hoon;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • PURPOSES : The use of environmentally friendly construction methods has been recently encouraged to reduce fuel consumption and the effects of global warming. For this purpose, the roller compacted concrete pavement (RCCP) construction method has been developed. RCCP is more environmentally friendly and economically efficient than general concrete by reducing the amount of CO2 generated through the application of a smaller amount of cement. RCCP has a number of advantages such as an easy construction method, low cost, high structural hydration performance, and aggregate interlocking. However, mix design standards and construction guidelines of RCCP are required for domestic application. In addition, a study on aggregate selection, which has an effect on the characteristics of RCCP, is necessary owing to a limited number of researches. Thus, the aggregate effect on the performance of RCCP in securing the required strength and workability was evaluated in consideration of domestic construction. METHODS : Sand and coarse aggregates of both 19mm and 13mm in maximum size were used in this study. Four types of aggregate gradations (s/a = 30%, 58%, and 70% for the sand and coarse aggregate of 19mm in maximum size, and s/a = 50% for a combination of the three types of aggregates) were set up to investigate the effects of the PCA band on the RCC characteristics. The conditions of s/a = 30% and 70% were evaluated to check the gradation effect outside of the recommended band. The conditions of s/a = 58% and 50% were used because they are the optimum combination of the two and three types of aggregates, respectively. RCCP gradation band was suggested gradation with a proper construction method of RCCP by synthetically comparing and analyzing the correlation of optimum water content, maximum dry density, and strength of requirements through its consistency and compaction test. RESULTS : The lower and upper limit lines are insufficient to secure a relatively strong development and workability compared to an aggregate gradation in the RCCP gradation band region. On the other hand, the line in the RCCP gradation band and the 0.45 power curve in the RCCP gradation band region were satisfactory, ensuring the required strength and workability. CONCLUSIONS : The suitable aggregate gradation on RCCP process should meet the RCCP gradation band area; however, fine particles passing through a #60 sieve do not need to be within the recommended gradation band because the influence of this region on such fine particles is small.