• Title/Summary/Keyword: Fuel cell system

Search Result 1,366, Processing Time 0.027 seconds

The characteristic analysis for polymer of household macromolecule fuel cell (가정용 고분자 연료전지의 중합체에 대한 특성해석)

  • Cho, Y.R.;Kim, N.H.;Han, K.H.;Yun, S.Y.;Baek, S.H.;Kim, I.N.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1722-1724
    • /
    • 2005
  • The focus of this paper is to develop a mathematical model for investigating the dynamic performance of a polymer electrolyte membrane fuel cell. The model in this work is based on physical laws having clear significance in replicating the fuel cell system and can easily be used to set up different operational strategies. Simulation results display the transient behavior of the voltage within each single cell, and also within a number of such single cells combined into a fuel cell stack system. A linear as well as a nonlinear analysis of the polymer electrolyte membrane fuel cell system(PEMFC) has been discussed in order to present a complete and comprehensive view of this kind of modeling. Also, a comparison of the two kinds of analysis has been performed. Finally, the various characteristics of the fuel cell system are plotted in order to help us understand its dynamic behavior. Results indicate that there is a considerable amount of error in the modeling process if we use a linear model of the fuel cell. Thus, the nonlinearities present in the fuel cell system should be taken into account in order to obtain a better understanding of the dynamic behavior of the fuel cell system.

  • PDF

Advanced Interchangeable Dynamic Simulation Model for the Optimal Design of a Fuel Cell Power Conditioning System

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Lee, Byoung-Kuk;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.561-570
    • /
    • 2010
  • This paper presents an advanced dynamic simulation model of a proton exchange membrane fuel cell for the optimal design of a fuel cell power conditioning system (FC-PCS). For the development of fuel cell models, the dynamic characteristics of the fuel cell are considered, including its static characteristics. Then, software fuel cell simulation is realized using Matlab-Simulink. Specifically, the design consideration of PCS (i.e., power semiconductor switch, capacitor, and inductor) is discussed by comparatively analyzing the developed simulator and ideal DC source. In addition, a cosimulation between the fuel cell model and PCS realized using the PSIM software is performed with the help of the SimCoupler module. Detailed analysis and informative simulation results are provided for the optimal design of fuel cell PCS.

Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell (PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석)

  • Jang, Hyuntak;Kang, Esak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Bidirectional Power Transmission Fuel Cell System for Notebook Battery (노트북 배터리용 양방향 전력전송 연료전지 시스템)

  • JOUNG, GYUBUM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2017
  • In this paper, a fuel cell battery charger system, which is capable of bi-directional power transmission without built in battery, has been designed and fabricated. Performance and states of the notebook battery in bi-directional power transmission using the manufactured system have been tested. Before initializing the fuel cell charging system for 1 minute, the system received 10 W of electric power from notebook battery. Then the fuel cell charging system has been normal charging to notebook battery by 50 W. As a result of the experiment, the state of the notebook battery discharged less than 5% at the initial charging time, but then it has been charged. This results proves bi-directional power transmission in notebook computers increase the availability of fuel cell chargers.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Power Management of Fuel Cell Propulsion System for Unmanned Aerial Vehicles (무인기용 연료전지 추진 시스템의 동력 관리)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.13-16
    • /
    • 2007
  • Fuel cell was used as a propulsion system for unmanned aerial vehicles (UAV) in the present study. Fuel cell propulsion system are an ideal alternative power source with high energy density for high-endurance UAV. Fuel cell power system provides UAV up to five times the energy densiη of existing batteries. Sodium borohydride, stored in liquid state, was selected as a hydrogen source. Hydrogen generation system consists of catalytic reactor, pump, fuel cartridge, and separator. Hybrid power management system (PMS) between fuel cell and lithium-polymer ba야ery was developed. Motor, pump, and fans, operated on battery power controlled by feedback signals of fuel cell system. Battery was recharged by surpuls powr of fuel cell.

  • PDF

Development of Bifunctional Electrocatalyst for PEM URFC (고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발)

  • Yim, Sung-Dae;Park, Gu-Gon;Sohn, Young-Jun;Yang, Tae-Hyun;Yoon, Young-Gi;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

The Energy and Environmental Performance of Hydrogen Fuel Cell System in Apartment Complex (공동주택 단지 적용 수소연료전지 시스템의 에너지 및 환경 성능 평가)

  • Kim, Yong-Hee;Kim, Hae-Jung;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.199-204
    • /
    • 2009
  • This study analyzed the central heating system and the cogeneration system among the methods of supplying energy which have application to the Hydrogen Fuel Cell system and apartment complexes for performance evaluations. Therefore, a feasibility study on the first application of this system in an apartment complexes was considered to evaluate the energy performance by the amount of fuel consumed by the system using Hydrogen Fuel Cell energy and environmental performance by the amount of greenhouse gas emissions. As a result, the Hydrogen Fuel Cell system consumes 83% of fuel while the cogeneration system consumes 81% of fuel comparison to conventional central heating system. The Hydrogen Fuel Cell and the cogeneration system produce 73%t and 70% of greenhouse gas emissions in comparison to conventional central heating system.

  • PDF

Cathodic Recirculation System Using a Dual-ejector to Improve Oxygen Utilization of a Submarine Fuel Cell

  • Kim, Min-Jin;Sohn, Young-Jun;Lee, Won-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.193-197
    • /
    • 2010
  • In terms of the system efficiency, it is very useful to apply the ejector into the fuel recirculation system of a fuel cell system since the ejector needs no parasitic power to operate. Since the conventional automotive fuel cell use hydrogen and air as their fuel, the only hydrogen is needed to be recirculated for the better fuel efficiency. On the other hand, the submarine fuel cell needs both hydrogen and oxygen recirculation systems because the submarine drives under the sea. In particular, the cathodic recirculation has to meet the tougher target since the oxygen based pressurized stack generally used in the submarine applications generates the significant amount of the water in the stack during the operation. Namely, the oxygen utilization has designed less than 50% in the whole operating range for the better exhausting of the generated waters. And thereby in terms of the oxygen utilization, the entrainment ratio of the ejector should be more than 1 within the whole operating range. However, the conventional ejector using a constant nozzle can not afford to satisfy the mentioned critical requirement. To overcome the problem, the dual-ejector and its control strategy are designed. The performance of the proposed dual-ejector is verified by the experiments based on the real operating conditions of the target submarine system. Furthermore, the proposed design method can be used for the other fuel recirculation system of a large-scale fuel cell system with the critical requirement of the fuel utilization.