• Title/Summary/Keyword: Fuel cell performance

Search Result 1,388, Processing Time 0.026 seconds

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Development of Bifunctional Electrocatalyst for PEM URFC (고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발)

  • Yim, Sung-Dae;Park, Gu-Gon;Sohn, Young-Jun;Yang, Tae-Hyun;Yoon, Young-Gi;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

Study on Development of the Isolation Resistance Measurement System for Hydrogen Fuel Cell Vehicle (수소연료전지자동차용 절연저항 측정시스템 개발에 관한 연구)

  • Lee, Ki-Yeon;Kim, Dong-Ook;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1068-1072
    • /
    • 2011
  • Hydrogen Fuel Cell Vehicle(HFCV) is system that uses electrical energy of fuel cell stack to main power source, which is different system with other vehicles that use high-voltage, large-current. Isolation performance of this system which is connected with electrical fire and electrical shock is important point. Isolation resistance of electric installation is divided according to working voltage, it follows criterion more than $100{\Omega}$/VDC (or $500{\Omega}$/VAC) about system operation voltage in a hydrogen fuel cell vehicle. Although measurement of isolation resistance in a hydrogen fuel cell vehicle is two methods, it uses mainly measurement by megger. However, the present isolation resistance measurement system that is optimized to use in electrical facilities is unsuitable for isolation performance estimation of a hydrogen fuel cell vehicle because of limit of maximum short current and difference of measurement resolution. Therefore, this research developed the isolation resistance measurement system so that may be suitable in isolation performance estimation of a hydrogen fuel cell vehicle, verified isolation performance about known resistance by performance verification of laboratory level about developed system, and executed performance verification through comparing results of developed system by performance verification of vehicle level with ones of existing megger. Developed system is judged to aid estimation and upgrade of isolation performance in a hydrogen fuel cell vehicle hereafter.

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.

Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측)

  • Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

Impurities in the methanol fuel on the performance of direct methanol fuel cell (직접메탄올 연료전지의 성능에 미치는 메탄올 연료의 불순물)

  • Peck, Dong-Hyun;Lee, Jae-Hyuk;Park, Young-Chul;Lim, Seongyop;Kim, Sang-Kyung;Jung, Doo-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.1-124.1
    • /
    • 2010
  • The impurities in the methanol fuel that is used for direct methanol fuel cell (DMFC) could greatly affect the performance of membrane electrode assemblies (MEA). The most common impurities in the commercial methanol fuel are mainly ethanol, acetone, acetaldehyde, or ammonia. In this study, the effect of impurities in methanol fuel was investigated on the performance of MEA. The MEA for DMFC were prepared using a semi-automatic bar-coating machine, which can prepare the catalyst layer with uniform thickness for MEA. As a result, a single cell supplied with one of the 6 different kinds of methanol fuels showed a significant degradation of the fuel cell performance. The most common impurities in the commercial methanol fuel is mainly ethanol, acetone, acetaldehyde, or ammonia. The effects of the kind and the concentration of impurities in the methanol fuels were investigated on the performance of MEA for DMFC. We will propose the optimum compositions and limit concentration of impurities in methanol fuel for high performance of MEA for DMFC.

  • PDF

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

A Study on Anode Fuel Composition of Direct Borohydride/Hydrogen Peroxide Fuel Cell (직접 수소화붕소나트륨/과산화수소 연료전지의 산화극 연료 조성에 관한 연구)

  • LEE, TAE HOON;YU, SU SANG;OH, TAEK HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.514-523
    • /
    • 2021
  • This study investigated the effect of anode fuel composition on the performance of direct borohydride/hydrogen peroxide fuel cells (DBHPFCs). The effect of sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations on fuel cell performance was determined through fuel cell tests. Fuel cell performance increased with an increase in the NaBH4 concentration, whereas it decreased with an increase in the NaOH concentration. The anode fuel composition was selected as 10 wt% NaBH4+10 wt% NaOH+80 wt% H2O based on the fuel viscosity, electrochemical reaction rate, and decomposition reaction rate. DBHPFCs were also tested to analyze the effect of operating temperature and operation time on fuel cell performance. The present results can be used as a reference basis to determine operating conditions of DBHPFCs.

Performance of Large Electrode Single Cell for Proton-Exchange-Membrane Fuel Cells (고체고분자 연료전지용 대면적 단위전지의 특성)

  • Chun, Y.G.;Kim, C.S.;Peck, D.H.;Jung, D.H.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1255-1257
    • /
    • 1997
  • In order to obtain key technologies for a kW class internal humidifying proton-exchange-membrane fuel cell (PEMFC) a single cell with a large electrode area has been designed and manufactured and the performance of large area membrane/electrode assemblies (MEAs) has been evaluated by using the single cell. A small area MEA made of commercial E-TEK electrode and Nafion 117 membrane showed a performance of 0.7V, $300mA/cm^2$ whereas large area MEA made of catalyst layer on carbon support and Nafion 117 showed a lower performance. To improve the performance of large MEA direct coating of catalyst was carried out on the membrane using a screen printer.

  • PDF