• Title/Summary/Keyword: Fuel cell gaskets

Search Result 7, Processing Time 0.021 seconds

Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Jin-Kuk;Kim, Seok-Jin
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 2007
  • The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

Rubber gaskets for fuel cells-Life time prediction through acid ageing

  • Kim, Mi-Suk;Kim, Jin-Kuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.47-51
    • /
    • 2007
  • The present paper reports the life time prediction of Acrylonitrile-Butadiene rubber (NBR) fuel cell gasket materials as a function of operational variables like acid concentration, ageing time and temperature. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. The acid ageing of the gasket compounds has been investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing acid ($H_2SO_4$) concentrations of 5, 6, 7 and 10 vol%. Material characteristics the gas compound such as cross-link density, tensile strength and elongation at break were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both 120 and $140^{\circ}C$, but at $160^{\circ}C$ interestingly the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increase in both the acid concentrate ion & temperature. The life time of the compounds were evaluated using the Arrhenius equation.

  • PDF

Development and Evaluation of Gasket for Polymer Electrolyte Membrane Fuel Cell Stacks (고분자 전해질 연료전지 가스켓 설계 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • The design and fabrication of a metallic bipolar plate-gasket assembly for polymer electrolyte fuel cells (PEMFCs) is defined. This bipolar plate-gasket assembly was prepared by inserting a previously prepared bipolar plate in the specially designed gasket mold. For this aim, a proprietary fluoro-silicone based rubber was injected directly into the bipolar plate borders. Gaskets obtained like this showed the chemically / physically stable and the good sealibilty in typically operating PEM fuel cell conditions. And also, this bipolar plate-gasket assembly shows lots of advantages with respect to traditional PEMFCs stack assembling systems: useful application to automative stacking due to easy handling, reduced fabrication time, possibility of quality control and failed elements substitution. This bipolar plate-gasket assembly was evaluated in the short fuel cell stack and met the leakage requirement for normal operation both in short-term and in long-term operation. Especially, it was confirmed that this gasket could be applied successfully even in the high pressure FEM fuel cell systems(over 2.0 bar in absolute pressure).

  • PDF

Mechanical Properties of EPDM Gasket after Long-Term Operations (EPDM 가스켓의 장시간 운전에 따른 기계적 성능변화)

  • Wu, Lan;Kim, Seon-Hak;Cheon, Seung-Ho;Kim, Jin-Su;Hyun, Deok-Su;Kim, Byeong-Heon;Lee, Sung-Kun;Jeong, Jae-Hoon;Ji, Duk-Jin;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.488-494
    • /
    • 2011
  • Gasket plays an important role on sealing of the polymer electrolyte membrane fuel cell (PEMFC) stack. Stack requires gaskets in each cell to keep the hydrogen and air/oxygen within their respective regions. The failure of the gasket creates the problems of fuel leakage, mixing, damage on parts and can be a direct reason for the degrading the efficiency of fuel cell. The purpose of this paper researches on how mechanical properties of EPDM gasket in PEMFC are changed after long-term operations. The EPDM (ethylenepropylene-diene monomer) gaskets are obtained from the stack after long-term operations. DMA (dynamic mechanical analysis) is conducted to access the change of mechanical properties of the EPDM gasket. SEM/EDS (scanning electron microscope/energy dispersive spectroscopy) was used to show the surface topography and chemical characterization on the sample surface.

Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs (고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석)

  • Zhang, Yan;Lee, Ji-Jung;Park, Gyung-Se;Lee, Hong-Ki;Shim, Joong-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.

Finite Element Analysis of Gaskets for Hydrogen Fuel Cells (수소 연료전지용 가스켓의 유한요소해석)

  • Cheon, Kang-Min;Jang, Jong-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.95-101
    • /
    • 2021
  • An analysis was conducted to predict the behavior of gasket by applying an optimal-strain energy-density function selected through a uniaxial tensile test and an analysis of the gasket used in an actual hydrogen fuel cell. Among the models compared to predict the materials' properties, the Mooney-Rivlin secondary model showed the behavior most similar to the test results. The maximum stress of the gasket was not significantly different, depending on the location. The maximum surface pressure of the gasket was higher at positions "T" and "Y" than at other positions, owing to the branch-shape effect. In the future, a jig that can measure the surface pressure will be manufactured and a comparative verification study will be conducted between the test results and the analysis results.

Design of Gaskets for Hydrogen Fuel Cells Using Taguchi Method (다구찌 기법을 이용한 수소 연료전지용 가스켓 설계)

  • Cheon, Kang-Min;An, Jun-Hyeon;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.66-72
    • /
    • 2022
  • The Mooney-Rivlin second order optimal strain energy function derived through uniaxial tensile test and analysis was applied to a gasket to confirm the internal stress and surface pressure generated during compression. The Taguchi method, a statistical technique, was used to design the optimum shape of the gasket, and through characteristic evaluation, the optimum shape of the gasket was obtained when the reference plane (T: 0.15 mm), contact surface (W: 1.00 mm), and curvature (R: 0.30 mm) were used. It was determined that the optimum shape yields a von Mises stress of 4.83 MPa, and the contact pressure stress is 20.14 MPa, which satisfies breakage and sealing requirements. In the future, we plan to manufacture a jig that can measure surface pressure to conduct comparative verification studies between the test results and analysis results.