• 제목/요약/키워드: Fuel behavior

검색결과 1,159건 처리시간 0.033초

디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구 (A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet)

  • 염정국;김민철
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

금속연료-피복재 상호확산 방지를 위한 크롬 도금법 적용 연구 (Cr Electroplating Technology to prevent Interdiffusion between Metallic Fuel and Clad Material)

  • 김준환;이강수;양성우;이병운;이찬복
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.937-944
    • /
    • 2011
  • Studies have been carried out in order to reduce fuel-cladding chemical interaction (FCCI) behavior of metallic fuel in sodium-cooled fast reactors (SFR) using an electroplating technique. A $20{\mu}m$ thick Cr layer has been plated by the electrochemical method in the Sargent bath over the HT9 (12Cr-1Mo) clad material and diffusion couple tests of the U-10Zr metallic fuel as well as the rare earth alloy (70Ce-29La) have been conducted. The results show that the Cr plating can prevent FCCI behavior along the fuel-clad interface. However, cracks developed through the thickness during plating, which resulted in the migration of some fuel constituents. Variation of bath temperature, application of pulse current, and post heat treatment have been conducted to control such cracks. We found out that some conditions like the pulse current and the post heat treatment enhanced the layer property by reducing the internal cracks and improving the diffusion couple test.

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

A STRESS ANALYSIS FOR A COATED FUEL PARTICLE OF A HTGR USING A FINITE ELEMENT METHOD

  • Kim, Young-Min;Cho, Moon-Sung
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1087-1100
    • /
    • 2009
  • A finite element method utilizing the Galerkin form of the weighted residuals procedure was developed to estimate the mechanical behavior for a coated fuel particle (CFP) of a high temperature gas-cooled reactor (HTGR). Through a weak formulation, finite element equations for multiple layers were set up to calculate the displacements and stresses in a CFP. The finite element method was applied to the stress analyses for three coating layers of a tri-isotropic coated fuel particle (TRISO) of a HTGR. The stresses calculated by the finite element method were in good agreement with those from a previously developed computer code and depicted the typical stress behavior of the coating layers very well. The newly developed finite element method performs a stress analysis for multiple bonded layers in a CFP by changing the material properties at any position in the layers during irradiation.

냉각속도가 지르칼로이-4 피복관의 취성에 미치는 영향 (Effect of Cooling Rate on the Behavior of the Embrittlement in Zircaloy-4 Cladding)

  • 김준환;이명호;최병권;정용환
    • 열처리공학회지
    • /
    • 제18권2호
    • /
    • pp.112-118
    • /
    • 2005
  • Study was focused on the effect of the cooling rate on the embrittlement behavior of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment. Claddings were oxidized at given temperature and given time followed by various water quenching in the range of $0.6^{\circ}C$ and $100^{\circ}C$ per second. Cladding failed after water quenching above the threshold oxidation. Threshold oxidation was decreased as the cooling rate increased, which is due to the matensite structure formed during fast cooling rate.

핵연료 피복관의 후우프 거동시험을 위한 시편의 최적형상 평가 (Evaluation of Optimized Ring Specimen Shape for the Hoop Behavior Test of Nuclear Fuel Clad Tube)

  • 서기석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.171-178
    • /
    • 2000
  • In order to evaluate the tensile behaviors of hoop direction for the nuclear fuel cladding tubes the shapes of specimen and jig fixtures for the ring test are decided with various conditions under the elastic-large plastic deformations. The axial displacement of the jig cylinders is converted to the circumferential direction elongations of specimen. The stress distributions on specimen are depended on the radii and locations of specimen and jig size and central angle. Therefore we calculated the stress distributions and decided the optimum shapes to get the uniform stress in the area of specimen gage length. Form the analysis the stress distributions in gate area are reviewed with the radii and location of specimen notch and the central angle of jig cylinder,. The optimum shapes of specimen and jig are proposed to the clad tube having 10.62 mm in diameter and 0.63mm in thickness for 16x16 PWR nuclear fuel assembly.

  • PDF

연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구 (Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature)

  • 이동조;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF

CANDU 핵연료 채널에 대한 동특성 및 결함증상 해석 (Dynamic Characteristic and Fault Analysis of the CANDU Nuclear Fuel Channel)

  • 박진호;이정한;김봉수;박기용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.345-349
    • /
    • 2003
  • The dynamic behavior of CANDU nuclear fuel channel was analyzed by the use of 3-dimensional finite element method, under the various fault conditions such as a fault in the end fitting support and the removal/migration of the garter spring in the fuel channel, in order to predict the dynamic behavior for a degraded symptoms of CANDU nuclear fuel channel. Moreover, the frequency response analysis for possible fault conditions was also peformed considering the effects of the pressure tube vibration and flow-induced vibration by the coolant flow. From the analysis of the frequency responses, defects in the garter spring have influenced the changes of 2nd and 3rd modes and all the important modes are varied for the failure in the journal bearing in the end fitting body.

  • PDF

복합재료 연료전지 스택의 열응력 해석 (Thermal Stress Analysis of a Fuel Cell Stack using an Orthotropic Material Model)

  • 전지훈;황운봉;엄석기;김수환;임태원
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.206-209
    • /
    • 2004
  • Mechanical behavior of a fuel stack was studied using an orthotropic material model. The fuel stack is essentially composed of a bipolar plate (BP), a gasket, an end plate, a membrane electrolyte assembly (MEA), and a gas diffusion layer (GDL). Each component is fastened with a suitable pressure. It is important to maintain a suitable contact pressure distribution of BP, because it influences the power efficiency of the fuel cell stack. When it is exposed to high temperature, its behavior must be stable. Hence, we performed stress analysis at high temperature as well as at room temperature. At high temperature, the contact pressure distribution becomes poor. Many patents have shown that using an elastomer can overcome this phenomena. Its effect was also studied. By using an elastomer, we found a good contact pressure distribution at high temperature as well as at room temperature.

  • PDF