• Title/Summary/Keyword: Fuel assembly

Search Result 676, Processing Time 0.023 seconds

Detector Foil Self-Shielding Correction Factors

  • Kwon, Oh-Sun;Kim, Bong-Ghi;Suk, Ho-Chun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.197-201
    • /
    • 1996
  • In the detail reaction-rate measurements in a critical assembly using the foil activation method, the measured activations of detector foils have inevitably errors caused by detector foil self-shielding effect. If neutron flux could be approximated to Westcott flux: i.e. well thermalized Maxwellian distribution, these activations of detector foil could be corrected to represent the unperturbated flux at any detected position in the cell with using Westcott option and reaction-rate option of the lattice code, WIMS-AECL. These calculated detector material self-shielding correction factors of the tested fuel, CANFLEX provided much information about neutron spectrum of test lattice cell as well as the correction factors themselves. The results could be verified by another lattice calculations.

  • PDF

경수로 핵연료집합체의 모드해석 및 유동시험 평가

  • 전상윤;김용환;전경락;김재원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.46-51
    • /
    • 1997
  • 최근 경수로 핵연료 손상 원인 중의 하나인 연료봉 마모(Fretting Wear)가 지지격자의 스프링력 저하뿐만 아니라 원자로 냉각재 유동에 기인한 집합체 진동(Self-excited Fuel Assembly Vibration)에 의해 유발될 수 있는 것으로 밝혀져 해외 연료공급자들은 새로운 연료개발시 집합체 유동시험을 수행하여 냉각재 유동에 의한 집합체 진동 여부를 확인하고 있다. 본 연구에서는 경수로 핵연료집합체에 대한 모드해석 및 진동시험으로부터 고유진동수 및 진동모드형태를 구하여 모의 집합체 유동시험 결과와 비교 평가하였고 냉각재 유동에 의해 과도한 집합체 진동이 발생됨을 확인하였으며 가연성흡수봉집합체를 삽입한 경우에 대한 유동시험 결과와도 비교하였다. 또한, 이들 집합체의 진동 변위량과 손상 연료의 마모량 분포의 상관성을 비교 평가하였다.

  • PDF

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

Preliminary Design of the Forced Gas Drying System for Spent Nuclear Fuel Dry Storage (사용후핵연료 건식저장을 위한 기체강제순환 건조장치 예비설계)

  • Chae, Gyung-sun;Shin, Kyung-wook;Park, Byeong-mok;Han, Jae-hyun;Lee, Geon-hui;Park, Jae-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.403-409
    • /
    • 2017
  • For dry storage of the spent nuclear fuel (SNF) stored in the storage pool of a nuclear power plant, essentially all moisture must be removed to prevent corrosion of the assembly and canister internals and/or degradation of fuel cladding integrity after SNF canister loading operation. R&D work is now in progress on a forced gas drying system that can be used to remove residual water in canisters. In this work, preliminary design is performed to manufacture the forced gas drying system. This process includes a case study of dry methods for canister moisture removal, relative codes and standards, confirmation of adequate dryness, needs analysis at plant sites, and characteristics of SNF stored in pools. Through this preliminary design work, we obtained a conceptual flow diagram and preliminary P&ID of the forced gas drying system. The results of this study can be used to determine details of the design to manufacture the forced gas drying system.

Perception Survey Study on High-level Radioactive Waste: Targeting Local Residents in Gijang-gun, Busan (고준위방사성폐기물에 대한 인식 조사 연구: 부산 기장군 지역 주민을 대상으로)

  • Yeon-Hee Kang;Sung Hee Yang;Yong In Cho;Jung-Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.947-955
    • /
    • 2023
  • This study was conducted to investigate the awareness of spent nuclear fuel among residents in nuclear power plant areas and use it as basic data for establishing a disposal facility for high-level radioactive waste. 204 questionnaires collected online were analyzed using SPSS Window Ver 28.0. To verify differences between groups, t-test and one-way ANOVA were performed. And correlation analysis was conducted to confirm the relationship between variables. As a result, first, risk perception regarding nuclear-related accidents showed statistically significant differences depending on gender and educational level. The position on the construction of a permanent disposal facility for spent nuclear fuel showed a statistically significant difference depending on gender, education, and age, and the perception of the importance of each evaluation standard for establishing a spent nuclear fuel management plan showed a statistically significant difference depending on education and age. In terms of trust in information-providing institutions, trust in the National Assembly was found to be the lowest. Second, the results of the correlation analysis between variables showed that local residents are aware that an alternative to the current disposal of spent nuclear fuel is needed, and that financial support for the construction of a permanent disposal facility is needed. Therefore, in order to build a high-level radioactive waste disposal site, it is believed that it is necessary to increase trust in the government, collect opinions from local residents, and provide economic support.

Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

  • Nasrazadani, Zahra;Salimi, Raana;Askari, Afrooz;Khorsandi, Jamshid;Mirvakili, Mohammad;Mashayekh, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor ($K_{eff}$) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of $D_2O$, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs (20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비)

  • Jung, Ju-Hae;Jung, Dong-Won;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

Electricity Generation and Microbial Community variation in Microbial Fuel Cell with various Electrode Combinations. (다양한 탄소전극조합에 따른 미생물 연료전지의 전기발생량 및 미생물 군집변화)

  • Kwon, Jae-Hyeong;Choi, Soo-Jung;Cha, Jae-Hwan;Kim, Hyo-Soo;Kim, Ye-Jin;Yu, Jae-Cheul;Kim, Chan-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2010
  • The electrode material is one of the factors affecting the power production of microbial fuel cell. In this study, effects of carbon electrode material, thickness and configuration on the power density, biofilm formation and microbial community diversity of microbial fuel cell were investigated. To optimize the anode-cathode electrode assembly, seven lab-scale reactors which had various carbon electrode constructions were operated in continuous mode. Under the steady state condition, the electrode combination of graphite felt (6 mm) with hole showed the highest cell voltage of 238 mV and the coulombic efficiency of 37%. As a result of SEM analysis, the bacteria growing on surface of knitted type of carbon cloth and graphite felt electrode ncreased significantly. The change of dominant species between seeding sludge and biofilm on the surface of anode electrode, microbial analysis with PCR-DGGE showed that the dominant species of seeding sludge are quite different from those of biofilm on the surface of each anode electrode. Especially Geobacter sp., a well known electrochemical bacteria, was found as the dominant species of the electrode combination with graphite felt.

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.