• Title/Summary/Keyword: Fuel assembly

Search Result 676, Processing Time 0.025 seconds

Design of Diagnostic System for Reactor Internal Structures Using Neutron Noise (중성자 신호이용 원자로 내부 구조물 감시시스템 설계)

  • Park, Jong-Beom;Park, Jin-Ho;Hwang, Choong-Hwan;Kim, In-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.638-640
    • /
    • 2000
  • Reactor Noise is defined as the fluctuations of measured instrumentation signals during full-power operation of reactor which have informations on reactor system dynamics such as neutron kinetics, thermal-hydraulics, and structural dynamics. Reactor noise analyses of ex-core neutron detector internals such as fuel assembly and Core Support Barrel in Nuclear Power Plant. A real time mode separation technique have been developed and applied for the analyses. The analyses data base have been constructed for the continuous monitoring and diagnose of the reactor internals. Detailed design of diagnostic system reactor internal structures using neutron noise(RIDS).

  • PDF

Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi, Sang-Chul;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

The Conceptual Design of Primary Cooling System for an Advanced Research Reactor (수출전략형 연구로의 1차 냉각계통 개념설계)

  • Park, Yong-Chul;Kim, Kyung-Ryun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.503-508
    • /
    • 2005
  • An advanced Research Reactor (ARR) consists of an open-tank-type reactor assembly within a light water pool and generates thermal power of 20 MW. The thermal power is including a fission heat in the core, a fuel generated heat temporary stored in the pool, a circulating pumps generated heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the primary cooling system will be installed. In this study, the conceptual design of the primary cooling system has been carried out using a design methodology of HANARO within a permissible range of safety. As results, it has been established that the conceptual design of the primary cooling system including design requirements, performance requirements, design restrictions, system descriptions and system operation to maintain the system functions.

  • PDF

International Progress on the Impacts of Aviation on Climate Change and Study for an Advanced Carbon Calculation Methodology (국제항공 기후변화 관련 국제동향과 항공 배출가스 계산방법의 개선에 관한 연구)

  • Lee, Gun Young;Yoo, Kwang Eui;Hwang, Sung Youn
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.2
    • /
    • pp.62-69
    • /
    • 2013
  • The introduction of aviation into the EU-ETS has faced significant opposition from many ICAO member States. Accordingly a global solution through ICAO is in progress. This paper traces the progress of works done by the HGCC in the area of global aviation aspiration goals aiming for the submission to the 38th Session of the ICAO Assembly. Furthermore, devices for calculating the carbon dioxide emissions from flights have been developed by several agencies including international organizations, governments, airlines and nongovernmental organizations. These carbon calculators, however, introduce too many assumptions to simplify the calculation process. This study assesses carbon calculators for aviation emissions and suggests a modified calculation methodology using the pre-existing computer reservation system for better accuracy.

Fission Product Inventory Calculation by a CASMO/ORIGEN Coupling Program

  • Kim, Do-Heon;Kim, Jong-Kyung;Park, Hangbok;Roh, Gyu-hong;Inha Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.70-75
    • /
    • 1997
  • A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14$\times$14 PWR fuel assembly and the results are given in this paper.

  • PDF

Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor (원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석)

  • Choi S.C.;Kim K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

Hot-Pressing Effects on Polymer Electrolyte Membrane Investigated by 2H NMR Spectroscopy

  • Lee, Sang Man;Han, Oc Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.510-514
    • /
    • 2013
  • The structural change of Nafion polymer electrolyte membrane (PEM) induced by hot-pressing, which is one of the representative procedures for preparing membrane-electrode-assembly for low temperature fuel cells, was investigated by $^2H$ nuclear magnetic resonance (NMR) spectroscopy. The hydrophilic channels were asymmetrically flattened and more aligned in the membrane plane than along the hot-pressing direction. The average O-$^2H$ director of $^2H_2O$ in polymer electrolyte membrane was employed to extract the structural information from the $^2H$ NMR peak splitting data. The dependence of $^2H$ NMR data on water contents was systematically analyzed for the first time. The approach presented here can be used to understand the chemicals' behavior in nano-spaces, especially those reshaping and functioning interactively with the chemicals in the wet and/or mixed state.

Wire-wrap Models for Subchannel Blockage Analysis

  • Ha K.S.;Jeong H.Y.;Chang W.P.;Kwon Y.M.;Lee Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.165-174
    • /
    • 2004
  • The distributed resistance model has been recently implemented into the MATRA-LMR code in order to improve its prediction capability over the wire-wrap model for a flow blockage analysis in the LMR. The code capability has been investigated using experimental data observed in the FFM (Fuel Failure Mock-up)-2A and 5B for two typical flow conditions in a blocked channel. The predicted results by the MATRA-LMR with a distributed resistance model agreed well with the experimental data for wire-wrapped subchannels. However, it is suggested that the parameter n in the distributed resistance model needs to be calibrated accurately for a reasonable prediction of the temperature field under a low flow condition. Finally, the analyses of a blockage for the assembly of the KALIMER design are performed. Satisfactory results by the MATRA-LMR code were obtained through and rerified a comparison with results of the SABRE code.

195Pt NMR Study of the Influence of Nation Ionomer on the Enhanced Local Density of States at the Surface of Carbon-Supported pt Catalysts

  • Han, Kee-Sung;Lee, Moo-Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • $^{195}Pt$ NMR measurements were performed to deduce the variation of local density of states at the Fermi energy ($E_F$-LDOS) at the surface of carbonsupported Pt catalysts due to the addition of $Nafion^{(R)}$ ionomer in the metalelectrode-assembly for fuel cells. The results showed that the EF-LDOS at the surface of Pt particles was enhanced by the addition of $Nafion^{(R)}$ ionomers whereas it was uninfluenced in the inner (bulk) part of the Pt particles. This suggests that the effects of ionomers on the electronic states of the Pt particle surface are related to the electrochemical activity of the catalysts.