• Title/Summary/Keyword: Fuel Vessel Design

Search Result 103, Processing Time 0.03 seconds

Study on Seismic Response Characteristics of Reactor Vessel Internals and Fuel Assembly for OBE Elimination

  • M. J. Jhung;Y. G. Yune;Lee, J. H.;Lee, J. B.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • To resolve a general argument about OBE elimination for the future nuclear power plant design, seismic responses of reactor vessel internals and fuel assembly for Ulchin nuclear power plant units 3 and 4 in Korea are investigated as an example. Dynamic analyses of the coupled internals and core are performed for the seismic excitations using the reactor vessel motions. By investigating the response relations between OBE and SSE and their response characteristics, the critical components for OBE loading are addressed. Also the fuel assembly responses are calculated using the core plate motions and their behavior is found to be insignificant for OBE elimination.

  • PDF

Design of the discharge cleaning system for KSTAR vacuum vessel (KSTAR 제1벽 세정을 위한 방전세정 시스템 설계)

  • Jeong, S.H.;In, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.383-387
    • /
    • 2007
  • In this paper the design of the discharge cleaning system for KSTAR vacuum vessel is described. We first discuss about the parameters which are related the efficiency of discharge cleaning. The RG(RF-assisted Glow) discharge which has the ignition and sustain pressure lower than those in the case of DC discharge, thus has the higher efficiency of discharge cleaning. So we adopt the RG discharge, in practical design, for KSTAR discharge cleaning system. For uniformity of the cleaning effect, we plan to install two discharge cleaning systems in A- and I-port of the KSTAR vacuum vessel. The designed system will be adapted for the study of the fuel recycling and of the boronization as well as the discharge cleaning of the KSTAR vacuum vessel.

Modeling and Simulation of Secondary Battery-Fuel Cell Propulsion System for Underwater Vessel to Estimate the Operation Time (수중함용 2차전지-연료전지 추진체계의 성능 예측을 위한 M&S 연구)

  • Ji, Hyunjin;Cho, Sungbaek;Bae, Joongmyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.694-702
    • /
    • 2014
  • One of the most important devices in an underwater vessel is a propulsion system. It should be a quiet and efficient system for stealthy operations in the large mission area. Hence lead-acid battery system has been used to supply the energy to electric motor. Recent technological developments and improvements, such as polymer electrolyte membrane(PEM) fuel cell and lithium polymer battery and have created the potential to improve overall power and propulsion performance. An underwater vessel always starts their mission with a limited energy and is not easy to refuel. Therefore design of energy elements, such as fuel cell and battery, and their load distribution are important to increase the maximum operating time of underwater vessel. In this paper, the lead-acid battery/PEM fuel cell and lithium polymer battery/PEM fuel cell were suggested as propulsion system and their performances were analyzed by modeling and simulation using Matlab/Simulink. Each model concentrated on representing the characteristics of energy element depending on demand current. As a result the effect of load distribution between battery and fuel cell was evaluated and the operation time of each propulsion system was able to be estimated exactly.

Optimum Position Study of LNG Fueled System Considering Characteristics of AHTS Vessel (AHTS 선박의 특성을 고려한 LNG 연료공급시스템 최적위치 연구)

  • Koo, Ja-Won;Lee, Weon-Chul;Yu, Byeong-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.9-13
    • /
    • 2015
  • While environmental concern is urging shipbuilding industry to reduce pollutant emission, it is necessary to design environmental friendly vessels. LNG as fuel for ship propulsion is proven to be effective way to reduce pollutant emission. In this study, we find optimum position of LNG fuel supply system on AHTS by considering vessel characteristic. Three different positions of fuel supply system are studied in this paper. Factors such as stability, strength and safety are examined in each position of fuel supply system.

  • PDF

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Superheated Water-Cooled Small Modular Underwater Reactor Concept

  • Shirvan, Koroush;Kazimi, Mujid
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1338-1348
    • /
    • 2016
  • A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at $500^{\circ}C$ to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

A Study on the Basic design changes according to the application of LNG Ready - S Notation (ABS LNG Ready - S Notation 적용에 따른 기본설계 변경사항 검토)

  • Song, Da-Hye
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.54-58
    • /
    • 2017
  • The vessels which are operated in ECA (Emission Control Area) after $1^{st}$ January 2016 shall be complied with revised NOx emission requirement (Tier III). Effective solutions for NOx emission requirement are SCR (Selective Catalytic Reduction), EGR (Exhaust Gas Recirculation) and Installation of LNG Dual Fuel Engine. This study is considered the design modification as per application of LNG Ready notation. In case of LNG Ready - S notation, the vessel shall be retrofitted the Main engine with Dual fuel engine and LNG Fuel system after delivery. On this paper, the entire process for design modification was explained to meet the requirement for LNG Ready notation.

  • PDF

Optimal Design for CNG Composite Pressure Vessel Using Basalt Fiber (현무암 섬유를이용한 CNG 복합재 압력용기의 최적설계)

  • Jang, Hyo Seong;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2015
  • Compressed natural gas (CNG) composite vessels for vehicles have been generally made of 34CrMo4 for a inner liner part and E-glass/epoxy for a composite layer part. But, there is a problem of material loss of CNG composite vessels used in vehicles due to the design of excessive thickness of the liner. And, light weight of the CNG composite vessel is required for improving fuel efficiency. In this study, optimal design for CNG composite pressure vessel was performed by using basalt fiber, which is the environment-friendly material having a good mechanical strength. The optimal thickness of each part (inner liner and composite layer) was determined by theoretical analysis and FEA for satisfying structural safety and lightweight of the vessel. Also, for improving fatigue life, optimal autofrettage pressure was derived from FEA results.

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.