• Title/Summary/Keyword: Fuel Utilization

Search Result 438, Processing Time 0.027 seconds

Understanding of Polymer Electrolyte Membrane for a Unitized Regenerative Fuel Cell (URFC) (일체형 재생 연료전지(URFC)용 고분자 전해질 막의 이해)

  • Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • A unitized regenerative fuel cell (URFC) as a next-generation fuel cell technology was considered in the study. URFC is a mandatory technology for the completion of the hybrid system with the fuel cell and the renewable energy sources, and it can be expected as a new technology for the realization of hydrogen economy society in the $21^{st}$ century. Specifically, the recent research data and results concerning the polymer electrolyte membrane for the URFC technology were summarized in the study. The prime requirements of polymer electrolyte membrane for the URFC applications are high proton conductivity, dimensional stability, mechanical strength, and interfacial stability with the electrode binder. Based on the performance of the polymer electrolyte membrane, the URFC technology combining the systems for the production, storage, utilization of hydrogen can be a new research area in the development of an advanced technology concerning with renewable energy such as fuel cell, solar cell, and wind power.

Analysis of the Operating Point and Fault Current Contribution of a PEMFC as Distributed Generation (DG)

  • Moon, Dae-Seong;Kang, Gi-Hyeok;Chung, Il-Yop;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.382-388
    • /
    • 2009
  • Recently, hydrogen energy has been anticipated to change the paradigm of conventional power systems because it can expand sustainable energy utilization and conceptually provide remarkable flexibility to power system operation. Since hydrogen energy can be converted to electric energy through fuel cells, fuel cells are expected to play an important role in the future hydrogen economy. In this paper, a Proton Exchange Membrane Fuel Cell (PEMFC) is modeled as an equivalent circuit and its steady-state characteristics investigated using the model. PEMFCs can be connected to power systems through power conditioning systems, which consist of power electronic circuits, and which are operated as distributed generators. This paper analyzes the effects of the characteristics of the PEMFC internal voltages and investigated the dynamic responses of the PEMFC under fault conditions. The results show that the fault current contribution of the PEMFC is different from those of conventional generators and is closely related to its operating point.

The effect of air and spray turbulence in a D.I. diesel engine on the flame progress (直接噴射式 디이젤機關의 燃燒室形狀과 火焰의 發達)

  • ;;Ohta, Motoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.44-52
    • /
    • 1987
  • For the favorable performance of a D.I. diesel engine, it is important to improve the mixture formation process and the ensuing early stage of combustion process. In the present paper, high speed photography was employed to investigate the effectiveness of a cavity digged in a piston crown for some more useful utilization of air. The cavity would function to improve mixing of fuel and air by the increase of turbulence of air and by the impingement of fuel spray on the cavity wall. The results obtained are summarized as follows: (1) From an aspect of thermal efficiency, it is effective to inject the spray tangentially to the cavity wall to enlarge the area of spray evaporation. (2) some deductions obtained from previous investigations using a hot air stream duct are supported by the present results. For example, it is effective for the quick development of flames throughout the combustion chamber to mix the evaporated fuel of main spray with the intermediates brought about by the early stage of combustion of the preceded auxiliary fuel spray.

Circulating Fluidized Bed Combustion of Refuse Derived Fuel (폐기물 연료의 순환유동층 연소기술)

  • Shun Dowon;Bae Dal-Hee;Lee Seung-Yong;Jo Sung-Ho
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.58-65
    • /
    • 2006
  • A new technology for refused derive fuel(RDF) utilization in circulating fluidized bed is under development. The RDF is tested in a bench scale circulating fluidized bed(CFB) combustor and its burning characteristics were investigated and collected as design parameters. The combustions were controllable and the HCl emission which is most important toxic emission were below 150 ppm at the exit of the combustor. The differences between conventional coal homing circulating fluidized bed boiler and the exclusive RDF boiler were studied and commercial scale co-generation CFB for RDF was designed.

Circulating Fluidized Bed Combustion of Refuse Derived Fuel (폐기물 연료의 순환유동층 연소기술)

  • Shun, Do-Won;Bae, Dal-Hee;Lee, Seung-Yong;Jo, Sung-Ho
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.124-134
    • /
    • 2005
  • A new technology for refused derive fuel(RDF) utilization in circulating fluidized bed is under development. The RDF is tested in a bench scale circulating fluidized bed(CFB) combustor and it's burning characteristics were investigated and collected as design parameters. The combustions were controllable and the HCl emission which is most important toxic emission were below 150ppm out of combustor. The differences between conventional coal burning circulating fluidized bed boiler and the exclusive RDF boiler were studied and commercial scale co-generation RDF CFB's were designed.

  • PDF

Effects of Nafion Contents on the Performance of MEAs Prepared by Decal-Transfer Method (Nafion 함량이 데칼전사기법을 통해 제작된 고분자 전해질 연료전지의 MEA 성능에 미치는 영향)

  • Kim, Gyeong-Hee;Cho, Eun-Ae;Han, Jong-Hee;Kim, Sung-Hyun;Eom, Kwang-Sup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Nafion ionomer located in electrode helps to increase the platinum utilization and proton conductivity. To achieve higher performance in PEMFCs, it is important an optimum Nafion content in the electrode. As the platinum loading and fabricated method depend on the optimum Nafion content. In this study, we have examined the interrelationship between platinum loading and Nafion content fabricated by decal transfer method. For electrodes with 0.25 and 0.4 mg/$cm^2$ Pt loading, best performance was obtained at 25 wt.% Nafion ionomer loading. It is also found that MEA with 0.25 mg/$cm^2$ Pt, the optimum Nafion content appears differently at low and high current density.

An Experimental Study on the Performance and the Exhaust Emissions of Gasoline Engine Using Water-Gashol Blends as a Fuel (물-가스홀 혼합물을 연료로 사용한 가솔린기관의 성능 및 배기성분에 관한 실험적 연구)

  • 노상순;배명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.25-38
    • /
    • 1984
  • Since the energy shock in 1973, there have been wide studies for the developments of the alternative energy source, the rationalization of the energy utilization and the energy economy because of the recognition of the limitation of energy source all over the world. This study is experimentally examined in and compared with the engine performance of output, torque and fuel consumption rate, and the exhaust emissions with the change of engine rmp in the cases of using water-gashol blends, gashol and gasoline as a fuel in a conventional 4 cycle 4 cylinder gasoline engine. In the case of using water-gashol blends, it is installed by the exhaust manifold pipe into the intake manifold, and water is injected from nozzle fitted up the air horn of the carburetor. The results are obtained as follows; 1. In the case of an addition with water, the engine output and the torque are little difference with the case of gasoline. 2. The fuel consumption rate is decreased as compared with the case of gasoline. Especially, the decrease in quantity is remarkable at the low rpm. 3. The exhaust emissions are remarkably decreased as compared with the case of gasoline. Especially, decreases of CO and HC in quantity are remarkable at the low rpm, and a decrease of No/sub x/ in quantity is remarkable at the high rpm. 4. There is a moderate condition of operation because the producing factors of NO/sub x/ and CO, HC are contrary to each other.

  • PDF

EVOLUTION OF NUCLEAR FUEL MANAGEMENT AND REACTOR OPERATIONAL AID TOOLS

  • TURINSKY PAUL J.;KELLER PAUL M.;ABDEL-KHALIK HANY S.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented. This is done in support of the belief that further development of adaptive core simulation capabilities is required to further significantly advance the utility of core simulators in support of reactor operational aid tools.

Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System (캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석)

  • GYU SEOK SHIM;BYUNG HEUNG PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.

The Effect of Allium Vegetable Intake on the Utilization and Recuperation of Plasma Fuel in Acute-Exercising Rats

  • Cho, Youn-Ok;Kong, Eun-Young
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.155-159
    • /
    • 2003
  • Ninety rats were fed either a control diet or one of several allium vegetable diets (allium sativum (AS), allium cepa (AC), allium fistulosum (AF) or aliium tuberosum (AT) for 4 weeks and were separated into 3 groups : non-exercise (NE), exercise (EX), and exercise and recuperation (ER), The EX group was exercised on a treadmill for 1 hour just before sacrifice at the end of 4th week of diet intake and the ER group was recuperated for 2 hours after exercise. The levels of glucose (GLU), (PRO), triglyceride (TG), free fatty arid (FFA) and hemoglobin (Hb) were compared in plasma. In the U group, GLU levels of AS and AC tended to be higher than those of the control group. There were no differences in GLU levels between the control group and the allium vegetable groups in EX, whereas GLU levels of AS, AF and AT tended to be lower than that of control group in ER. There were no differences in PRO among the groups NE, EX and ER. TG and EEh levels of AS, AC, AF and AT tended to be lower than those of the control group in NE, EX and ER. Hb levels of AS, AC, AF and AT were lower than that of the control group in U and ER and tended to be lower than that of EX. These results suggest that allium vegetable diets have the potential to enhance the capacity to oxidize fatty acid and to recover triglyceride after recuperation, although there is compensation among stored fuel utilization during exercise