• 제목/요약/키워드: Fuel Supply System

검색결과 596건 처리시간 0.026초

전력공급장치를 이용한 선박용 연료전지 시뮬레이터의 구현 (Implementation of Fuel Cell Simulator for Ship Using the Programmable Power Supply)

  • 박도영;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1117-1122
    • /
    • 2012
  • 연료전지를 선박에 적용하는 연구를 위해서는 연료전지 특성을 고려한 전력 시스템 설계 및 부하 제어에 대한 연구가 필요하다. 하지만 연료전지를 직접 실험하기 위해서는 여러 보조기기들과 복잡한 제어 기술이 필요하다. 이러한 이유로 연료전지 시뮬레이터가 필요하며, 이를 위한 연구가 활발히 진행중이다. 본 논문에서는 자동차, 소형 선박 등에 적용되고 있는 PEMFC에 관하여 LabVIEW를 기반으로 시뮬레이션 하였다. 또한 이러한 시뮬레이션 데이터를 바탕으로 프로그램이 가능한 전력공급장치를 이용하여 시뮬레이터를 제작하여 연료전지의 특성을 구현하였다. 이를 통해 연료전지의 분극화 곡선과 변수에 따른 I-V특성을 확인할 수 있었다.

유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향 (Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump)

  • 신윤섭;이기수;김현철;정수진;박경용;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

전자제어 커먼레일 압축착화엔진용 고압연료펌프의 DME 적용 성능에 관한 연구 (A Study on the DME Application Performance of a High Pressure Fuel Pump for an Electric Controlled Common-rail Compression Ignition Engine)

  • 정재우;김남호;강정호;박상욱;이호길;최승규
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.132-140
    • /
    • 2009
  • Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.

다양한 탄종별 자체발열 특성과 물성의 비교 분석 (Evaluation of self-heating propensity and its relation with fuel properties of various coals)

  • 김정수;이용운;임현수;박호영;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.83-85
    • /
    • 2013
  • With an increase in the use of low rank coals in power plants, various operational issues were raised in the fuel storage and supply, combustion, boiler and flue gas treatment systems. In the fuel storage and supply system, the main issue is the self-heating propensity of low rank coals leading to spontaneous combustion in yard storage, transport and pulverization. This study evaluated the reactivity of various sub-bituminous and bituminous coals with oxygen at low temperatures by analyzing the temperature increase characteristics of coals under a constant flow rate of oxygen supply. The results were quantified to a self-heating index and the relation with the fuel properties were evaluated.

  • PDF

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for Fuel Cell Electric Bus)

  • 김우준;박창호;조경석;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

MATLAB/Simulink를 이용한 자동차용 상압형 PEM 연료전지 시스템의 성능 및 효율 분석 연구 (A Study on the Analysis of the Performance and Efficiency of a Low-pressure Operating PEMFC System for Vehicle Applications Using MATLAB/Simulink)

  • 박래혁;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.393-400
    • /
    • 2013
  • The air supply system has a significant effect on the efficiency of polymer electrolyte membrane fuel cell (PEMFC) systems. The performance and efficiency of automotive PEMFC systems are greatly influenced by their air supply system configurations. This study deals with the system simulation of automotive PEMFC systems using MATLAB/Simulink framework. In this study, a low-pressure operating PEMFC system adopting blower sub-module (turbo-blower) is modeled to investigate the effects of stack operating temperature and air stoichiometry on the parasitic power and efficiency of automotive PEMFC systems. In addition, the PEMFC net system efficiency and parasitic power of air supply system are mainly compared for the two types (low-pressure operating and high-pressure operating) of automotive PEMFC systems under the same net power conditions. It is suggested that the obtained results from this system approach can be applied for establishing the novel operating strategies for FC vehicles.

5kW급 고분자 연료전지 시스템의 개발과 운전 (Development and Operation of 5kW-Class Polymer Electrolyte Membrane Fuel Cell System)

  • 전영갑;백동현;전광선;김창수;신동렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1876-1878
    • /
    • 1999
  • Developed was a 5kW-class polymer electrolyte membrane fuel cell(PEMFC) system comprised of fuel cell stack, fuel processing, thermal and water management subsystems and ancillary equipments. Several large single cells have been fabricated with different gas flow field patterns and paths, and the gas flow field pattern for the stack has been determined based on the single cell performance of thin film membrane electrode assembly (MEA). The PEMFC stack was consisted of 100 cells with an electrode area of $300cm^2$, having serpentine flow pattern. Fuel processing was developed including an autothermal methanol reformer and two preferential CO oxidation reactors. The fuel processing was combined to PEMFC operation system consisted of air compressor and thermal and water management subsystems. The PEMFC stack showed performance of 5kW under the supply of $H_2$ and air, but its performance was lowered to 3.5kW under the supply of reformed gas.

  • PDF

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

연료 전지용 터보 익스펜더의 공기 포일 베어링에 대한 연구 (Study on the Air Foil Bearings of the Turbo-Expander for Fuel Cell System)

  • 이용복;박동진;김창호
    • Tribology and Lubricants
    • /
    • 제21권3호
    • /
    • pp.114-121
    • /
    • 2005
  • As fuel cell system is environmental friendly generator, its performance depends on its air supply system. Because, fuel cell stack generates electrical energy by electron and the electron is generated by reacting between air and hydrogen. So, more and more compressed air is supplied, more and more the energy can be obtained. In this study, turbo-expander supported by air foil bearing is introduced as the air supply system used by fuel cell systems. The turbo-expander is a turbo machine which operates at high speed, so air foil bearings suit its purpose for the bearing elements. Analysis for confirming the stability and endurance is conducted. Based on FDM and Newton-Raphson method, characteristics of air foil bearing, dynamic coefficients, pressure field and load capacity, are obtained. Using the characteristics of air foil bearing, the rotordynamic analysis is performed by finite element method. The analysis (stability analysis and critical speed map) shows that turbo-expander is stability at running speed. After the analysis, the test process and results are presented. The goals of test are running up to 90,000 RPM, flow rate of 150 $m^3/h$ and pressure ratio of 1.15. The test results show that the aerodynamic performance and stability of turbo-expander are satisfied to the primary goals.

디젤차량용 통합연료히터의 저온유동성 성능평가 (Low Temperature Fluidity Performance Evaluation of Composited Package Fuel Heater for Diesel Cars)

  • 이정화;박형원;이웅수;이영재;이보희;윤달환
    • 전기전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.152-158
    • /
    • 2014
  • 본 연구에서는 저온유동성 성능검사 시스템 구현을 통해 디젤 차량용 통합형 연료히터의 성능을 평가한다. 저온 유동성 시험장치에서 $+20{\sim}-30^{\circ}C$ 온도범위에 따라 분리형과 통합형 연료히터 성능을 비교하고, 필터 전후에 따라 유압과 시동시간, 히터의 소모전력을 측정한다. 이때 다양한 종류의 필터면적을 사용함으로써 통합형 연료히터와 분리형을 비교한 결과 시동 시간이 23% 향상되었고, 저온시동성능은 19% 정도 향상된다.