• Title/Summary/Keyword: Fuel Rod Fretting Wear

Search Result 49, Processing Time 0.022 seconds

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF

Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air

  • Kim, Tae-Hyung;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1274-1280
    • /
    • 2001
  • The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In the study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.

  • PDF

Fretting Characteristics of TiN Coated Zircaloy-4 Tube (TiN코팅한 지르칼로이-4튜브의 프레팅 특성)

  • 성지현;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.269-275
    • /
    • 2000
  • The fretting wear characteristics of TiN coated Zircaloy-4 tube were investigated experimentally The fretting wear experiment was performed using TiN coated Zircaloy-4 tube as the fuel rod cladding material and uncoated Zircaloy-4 tube as one of grids. TiN coating is probably one of the most frequently and successfully used PVD coatings for the mitigation of fretting wear. In this study, TiN coating by PVD was employed for improvement of Zircaloy-4 tube fretting characteristics. The fretting tester was designed and manufactured for this experiment. TiN coated Zircaloy-4 tube was used as the moving specimen, uncoated ZircaBoy-4 tube as the stationary one. The number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. The results of this research showed that the wear volume of TiN coated Zircaloy-4 tube increased as number of cycles, normal load and slip amplitude increase but the quantity of volume was lower than the case of uncoated Zircaloy-4 tube pairs.

  • PDF

A Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (경수 및 공기중에서의 지르칼로이-4 튜브의 프레팅 마멸특성 비교)

  • 조광희;김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.303-309
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water were greater than those in air under various slip amplitude. It was found that delaminate debris and surface cracks were observed at low slip amplitude and high load in water Experimental results showed that the light water accelerated the wear of Zircaloy-4 tube at low slip amplitude in fretting.

  • PDF

Fretting Wear Characteristics of Inconel-Zircaloy Contact in Air (공기중에서 인코넬-지르칼로이 접촉의 프레팅 마멸특성)

  • 노규철;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.310-316
    • /
    • 1999
  • The fretting wear characteristics of the contact between Zircaloy-4 tube and Inconel 600 tube have investigated. Zircaloy-4 is used for fuel rod in nuclear reactor and Inconel 600 is used for tube In steam generator of nuclear power plant. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. This study shows that the wear scar length of Zircaloy-4 and Inconel 600 increases as number of cycles, normal load and slip amplitude increase and the wear scar length of Zircaloy-4 is more longer than that of Inconel 600 due to the surface hardness.

  • PDF

Relationship between Spring Shapes and the Ratio of wear Volume to the Worn Area in Nuclear Fuel Fretting

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • Sliding and impact/sliding wear test in room temperature air and water were performed to evaluate the effect of spring shapes on the wear mechanism of a fuel rod. The main focus was to quantitatively compare the wear behavior of a fuel rod with different support springs (i.e. two concaves, a convex and a flat shape) using a ratio of wear volume to worn area (De)-The results indicated that the wear volumes at each spring condition were varied with the change of test environment and loading type. However, the relationship between the wear volume and worn area was determined by only spring shape even though the wear tests were carried out at different test conditions. From the above results, the optimized spring shape which has more wear-resistant could be determined using the analysis results of the relation between the variation of De and worn surface observations in each test condition.

Comparison of Fretting Wear Characteristics of Zircaloy-4 Tube in Light Water and in Air (지르칼로이-4 튜브 프레팅 마멸 특성의 환경 의존성과 마멸기구)

  • 조광희;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 1999
  • The fretting wear behaviour of Zircaloy-4 tube used as the fuel rod cladding in PWR nuclear power plants has been investigated at the different test environment, in light water and in air as a function of slip amplitude, normal load, test duration and frequency. Zircaloy-4 tubes were used for both of oscillating and stationary specimens. A fretting wear tester was designed to be suitable for this fretting test. The wear volume and specific wear rate of Zircaloy-4 tube in water was greater than those in air under various slip amplitude. Delaminates and surface cracks were observed at low slip amplitude and high load of fretting test in water, but the traces of adhesion and plowing were observed at and above 200 Um. The water accelerates the wear of Zircaloy-4 tube at lower slip amplitude in fretting.

Spacer Grid Assembly with Sliding Fuel Rod Support (삽입 및 이동 가능한 연료봉 지지부의 지지격자 형상)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.843-850
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components of the nuclear fuel assembly of a Pressurized Water Reactor (PWR). A primary design requirement is that the fuel rod integrity be maintained by the spacer grid assembly during the operation of the reactor. In this study, we suggested a new spacer grid assembly having a fuel rod support, which is capable of sliding when the fuel rod vibrates due to flow-induced vibrations in the reactor. By adjusting the relative displacement between the fuel rod and its support, the proposed design will help in reducing fuel rod fretting damage.

PERFORMANCE EVALUATION OF NEW SPACER GRID SHAPES FOR PWRS

  • Song, Kee-Nam;Lee, Soo-Bum;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.737-746
    • /
    • 2007
  • A spacer grid, which is one of the most important structural components in a PWR fuel assembly, supports its fuel rods laterally and vertically. Based on in-house design experience, scrutiny of the design features of advanced nuclear fuels and the patents of other spacer grids, KAERI has devised its own spacer grid shapes and acquired patents. In this study, a performance evaluation of KAERI's spacer grid shapes was carried out from mechanical/structural and thermohydraulic view points. A comparative performance evaluation of commercial spacer grid shapes was also carried out. The comparisons addressed the spring characteristics, fuel rod vibration characteristics, fretting wear resistance, impact strength characteristics, CHF enhancement, and the pressure drop level of the spacer grid shapes. The results show that the performances of KAERI's spacer grid shapes are as good as or better than those of the commercial spacer grid shapes.