• Title/Summary/Keyword: Fuel Rich Gas Generator

Search Result 46, Processing Time 0.026 seconds

Modeling of Non-Equilibrium Kinetics of Fuel Rich Combustion in Gas Generator (농후 연소 가스발생기의 비평형 연소 화학반응 모델링)

  • 유정민;이창진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.89-96
    • /
    • 2006
  • The combustion temperature in gas generator should be kept below around 1,000K to avoid any possible thermal damages to turbine blade by adopting either fuel rich or oxidizer rich combustion. Thus, non-equilibrium chemical reaction dominates in the gas generator. Meanwhile, Kerosene is a compounded fuel mixed with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focus to model the non-equilibrium chemical reaction of kerosene/LOX with detailed kinetics developed by Dagaut using PSR(Perfectly stirred reactor) assumption. Also, droplet evaporation time is taken into account by calculating for the residence time of droplet and by decoupling reaction temperature from the reactor temperature. In Dagaut’s surrogate model for kerosene, chemical kinetics of kerosene consists of 1592 reaction steps with 207 chemical species. The comparison of calculation results with experimental data could provide very reliable and accurate numbers in the prediction of combustion gas temperature, species fraction and other gas properties.

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF

Analysis of Pressure Fluctuations in a Gas Generator Assembled in a Powerpack (파워팩 상태의 가스발생기 동적 연소 특성 분석)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.145-148
    • /
    • 2009
  • Combustion tests of a fuel-rich gas generator had been conducted using the assembly of a powerpack. A gas generator is prone to longitudinal modes of combustion instabilities in a powerpack due to the increase of a characteristic length. It has been observed that the orifice inserted at the exit of the gas generator suppresses a longitudinal combustion instability. The intensities of pressure fluctuations in the manifolds and the chamber increase quadratically with a chamber pressure. Pressure fluctuations in the fuel manifold reveal two-fold strength greater than those in the oxygen manifold and the chamber. Frequency analysis indicates nonlinear characteristics inherent in the pressure fluctuations in the fuel manifold.

  • PDF

Hot-firing Tests of Afterburning Device for a Gas Generator (가스발생기용 후연소 장치 시험 결과)

  • Kim, Mun-Ki;Lim, Byoung-Jik;Kang, Dong-Hyuk;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.79-82
    • /
    • 2011
  • An afterburning device was developed to safely treat unburnt gases of fuel-rich condition discharged by a gas generator. Hot-firing tests for a subscale gas generator were carried out to investigate operation and safety of the afterburning device. When supplying additional liquid oxygen, the length of the afterburning flame was significantly reduced.

  • PDF

Fuel Rich Gas O/F Ratio Characteristics of HDPE and Paraffin Fuel in Low Range of the Oxidizer Mass Flux (저 산화제유속 구간에서의 HDPE 및 Paraffin 연료의 연료농후가스 O/F비 특성)

  • Han, Seongjoo;Ryu, Sunghoon;Kim, Jinkon;Kang, Teagon;Moon, Heejang;Kim, Junhyung;Ko, Seung Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.54-60
    • /
    • 2016
  • Multi-port HDPE and Paraffin firing tests are conducted for hybrid gas generator application of a ducted rocket in the low oxidizer mass flux range. A fuel rich gas of O/F ratio from 0.3 to 0.8, a typical O/F operating range of a ducted rocket gas generator, have been achieved with paraffin fuel implying that the hybrid system can be a potential candidate. It was also found that an almost constant O/F ratio regime exists under $35kg/m^2s$ of the oxidizer mass flux, opening a possibility for the paraffin fuel toward the VFDR gas generator application.

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector (충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • The results of the combustion performance tests of gas generator which supplies hot gas into the turbine of turbo-pump for liquid rocket engine and uses LOx and kerosene as propellant are described. The gas generator consists of a injector head with F-O-F impinging injector, a water cooled combustion chamber, a gas torch igniter, a turbulence ring and an instrument ring. The effect of turbulence ring and combustion chamber length on performance of gas generator are investigated. The ignition and combustion at design point are stable and the pressure and gas temperature at gas generator exit meets the target. The turbulence ring installed at middle of chamber effectively mixes hot gas with cold gas and the effect of residence time of hot gas in gas generator on combustion efficiency is small. Test results show that the main parameter controlling the gas temperature at gas generator exit is overall O/F ratio.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.38-45
    • /
    • 2007
  • A liquid rocket engine fuel-rich gas generator has been developed for the first time in the country, which can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas is not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator had been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involved precision machining, surface finish, and special welding technique. The final assessment on the characteristics of ignition and combustion had been carried out for two different versions of injector heads. This concluded that the present product satisfies the development requirements such as spatial temperature distribution and the development has been successful.

Development of a Liquid Rocket Engine Fuel-Rich Gas Generator (액체로켓용 연료 과농 가스발생기 개발)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Moon, Il-Yoon;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.181-185
    • /
    • 2006
  • A liquid rocket fuel-rich gas generator developed for the first time in the country can produce combustion gas over the rate of 4 kg/s at 900 K and 58 bar. The gas can be used not only for driving a turbopump but also for providing heat source for propellant supply tanks. The final design of the gas generator has been fixed based on the concept and preliminary development tests, and was validated through structure and heat transfer analysis. The manufacturing involves precision machining, special surface finish, and welding techniques. The final assessment on the characteristics of ignition and combustion had been carried out through five combustion tests. This concluded that the present product satisfies the development requirements.

  • PDF

Combustion Characteristics of High Pressure Gas Generator for Liquid Rocket Engine (액체로켓엔진용 가스발생기의 고압연소특성)

  • Han Yeoung-Min;Lee Kwang-Jin;Moon Il-Yoon;Seo Seong-Hyeon;Choi Hwan-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.341-345
    • /
    • 2005
  • This paper is for the combustion characteristics of gas generator which drive 1.5MW-class turbo pump and runs in fuel-rich combustion regime with LOx/kerosene as propellant. The outline of development procedure of real scale high pressure gas generator is introduced and the relation between O/F ratio and outlet temperature and the molecular weight and specific heat ratio of combustion gas are described. The relation between O/F ratio and temperature is newly obtained at higher pressure and the molecular weight and specific heat ratio is modified and their validity is confirmed by the mass relation equation.

  • PDF

Combustion Characteristics of a Gas Generator Associated with a Turbopump (터보펌프 연계상태의 가스발생기 연소 특성)

  • Seo, Seong-Hyeon;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The present study presents experimental results of combustion tests of a fuel-rich gas generator associated with a turbopump. Five combustion tests had been successfully executed. Static pressures of the gas generator promptly reacted to propellant supply variations from the turbopump. A closed-loop test for driving the turbopump revealed no flaw. Exit gas temperature results are very similar to previous ones. An orifice was effective on the suppression of pressure fluctuations although tests conducted below 45 bar showed the same dynamic behaviour as that of component-only tests.

  • PDF