• 제목/요약/키워드: Fuel Reformer

검색결과 189건 처리시간 0.026초

평판형 수소생산시스템의 수소개질 성능평가 (The performance evaluation for H2 reforming of the plate type hydrogen generation system)

  • 허수빈;윤봉석;이도형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.602-608
    • /
    • 2014
  • 저탄소 친환경 대체 에너지의 한 분야인 수소에너지는 화석연료의 개질 및 물의 전기분해 등 다양한 방법을 통해 얻어진다. 수소를 연료로 사용하는 연료전지인 PEMFC용 1kW급 평판형 수소생산시스템을 자체 개발하였다. FEMFC는 CO에 의한 오염에 민감하므로 공급되는 개질가스 중에 CO 농도는 10ppm 이하로 제거되어야 한다. 본 연구에서는 다양한 실험조건에서 $H_2$ 및 CO의 농도를 측정하여 최적의 운전조건을 확립하였다. 결과적으로 A/F ratio ${\alpha}=1.3$, STR temperature 1023K, S/C ratio 3, and $PrOx1{\cdot}2$ 30cc/min에서 최적임을 확인하였다. 또한 PrOx 2단이 CO 농도를 줄이는데 더욱 효과적임을 알 수 있었다.

수소추출기의 부분부하 운전을 위한 PSA 제어전략에 대한 연구 (A Study on PSA Controll Strategy for Part Load Operation of a Hydrogen Generator)

  • 이상호;김선엽;최영
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.819-826
    • /
    • 2022
  • Fuel cell systems are being supplied to households and buildings to reduce greenhouse gases. The fuel cell systems have problems of high cost and slow startup due to fuel processors. Greenhouse gas reduction of the fuel cell systems is also limited by using natural gas. The problems can be solved by using a hydrogen generator consisting of a reformer and pressure swing adsorption (PSA). However, part load operation of the hydrogen generator is required depending on the hydrogen consumption. In this paper, PSA operation strategies are investigated for part load of the hydrogen generator. Adsorption and purge time were changed in the range of part load ratio between from 0.5 to 1.0. As adsorption time increased, hydrogen recovery increased from 29.09% to 48.34% at 0.5 of part load ratio. Hydrogen recovery and hydrogen purity were also improved by increasing adsorption and purge time. However, hydrogen recovery dramatically decreased to 35.01% at 0.5 of part load ratio.

용융탄산염 연료전지용 평판형 개질기 열유동 전산유체역학 해석 (Computational Fluid Dynamics Analysis of Plate Type Reformer for MCFC)

  • 신동훈;서혜경;임희천;이상득
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.403-408
    • /
    • 2006
  • The plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber.

플라즈마를 이용한 FGR 기반 저 NOx 연소 타당성 연구 (Feasibility Study of Low NOx Combustion based on FGR using Plasma Reformer)

  • 김관태;이대훈;차민석;길상인;윤진한;김동현;송영훈
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformer was developed, and was applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer was to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator was enough 100 lpm to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen was added into the fuel supplied to the combustor. Test results showed that the addition of 25% hydrogen and 30% FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique developed in the present study showed good potential to replace $NH_3$ SCR technique, especially in the small-scale combustor applications.

  • PDF

통합 수증기 개질 시스템의 작동 조건에 대한 수치적 연구 (Parametric Study of an Integrated Steam Methane Reformer with Top-Fired Combustor)

  • 노정훈;정혜미;김동희;엄석기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.156.1-156.1
    • /
    • 2011
  • It is of great importance to predict operating parameter characteristics of an integrated fuel processor by the increased life-time and system performance. In this study, computational analysis is performed to gain fundamental insights on transport phenomena and chemical reactions in reformer which consists of preheating, steam reforming, and water gas shift reaction beds. Also, a top-fired burner locates inside of the reforming system. The combustor is providing thermal energy necessary for the steam reforming bed which is a endothermic catalytic reactor. Two-dimensional numerical model of the integrated fuel processing system is introduced for the analysis of heat and mass transport phenomena as well as surface kinetics and catalytic process. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Subsequently, parameter study using the validated steam methane reforming model was conducted by considering operating parameters, i.e. steam to carbon ratio and temperature.

  • PDF

개질기용 Anode off gas와 LNG의 예혼합 연소특성 (Premixed Combustion of the Mixture of Anode-off Gas from Reformer and LNG)

  • 이재영;이필형;한상석;박창수;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2198-2203
    • /
    • 2008
  • Hydrogen which can be produced through reforming process of hydrocarbon fuel is supplied into anode side of fuel cell system. In the fuel cell, only 70% of hydrogen is consumed through electrochemical reaction and 30% hydrogen passed by as anode off gas. When electrical output of fuel cell is within range of 1.0 to 3.0kW, burner for the reformer uses only anode off gas. And it uses mixture gas of anode off gas and LNG within range of 3.5 to 5.0kW in electrical output. CHEMKIN 4.1 program's Premixed code was used for calculating the properties of each gas. Results show that burning velocity and adiabatic flame temperature are 34.4cm/s, 1681.7K at equivalence ratio 0.8 within range of 1.0kW to 3.0kW and for cases of 3.5kW, 5.0kW, of electrical output, burning velocity and adiabatic flame temperature represent 30.5, 29.8cm/s and 1722.8, 1750K respectively. CO shows the lowest emission index at equivalence ratio 0.8 and NOx reveals the highest emission index at equivalence ratio 1.

  • PDF

소형 열병합 연료전지 연계형 연료처리시스템 개발 (The development of fuel processor for compact fuel cell cogeneration system)

  • 차정은;전희권;박정주;고윤택;황정태;장원철;김진영;김태원;김인기;정영식;갈한주;윤왕래;정운호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성 (Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production)

  • 박윤환;이대훈;김창업;강건용
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.8-14
    • /
    • 2013
  • 본 연구에서는 LPG자동차용으로 적용키 위한 플라즈마 개질에서 개질기 형상변화가 개질 특성에 미치는 영향에 대해 실험을 하였다. 수소 수율을 향상시키기 위해, 2차 개질기는 1차 개질기에 비해서 개질기 후단부의 부피를 증가시켜 플라즈마를 통과하는 개질가스의 반응시간을 증가시켰다. 각 개질기의 비교를 위하여 $O_2/C$ 비를 부분산화 조건에서부터 완전산화 조건까지, 총 유량은 20, 30, 40, 50 lpm으로 증가시키며 실험을 하였다. 각 개질기의 특성을 비교해본 결과, $O_2/C$ 비가 부분산화 조건에서 완전산화 조건으로 갈수록 LPG 전환율은 증가하였고, 수소 선택도는 감소하였으며, 수소 수율은 증가하다 감소하는 최적조건이 존재하였다. 개질기는 4.5배 부피가 큰 2차 개질기가 1차 개질기에 비해 동일 유량에서 수소 수율이 4~14% 증가한 결과를 얻을 수 있었다.

중저온 열원에 의한 메탄 수증기 개질의 형상 인자에 따른 특성 (Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source)

  • 신가희;윤진원;유상석
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.793-799
    • /
    • 2016
  • 폐열을 열원으로 사용하는 저온형 개질기는 하이브리드 연료전지 시스템의 효율향상을 위해 사용되고 있다. 저온형 개질기의 경우 저온의 열적상태에서 높은 열전달 효율을 내는 것이 중요하며, 이를 위한 형상 최적화의 과정이 필요하다. 본 연구에서는 제한된 열공급 상황에서 개질기의 형상인자 변화에 따른 온도 및 반응특성을 전산해석을 통하여 알아보고자 하였다. 해석결과 저온형 개질기의 반응이 활발히 일어나는 영역은 온도가 높은 후단에 제한되는 현상을 보여 고온형 개질기와의 차이를 나타내었다. 또한 개질기의 기체공간속도(Gas hourly space velocity, GHSV)를 감소시키거나 열전달 면적을 증대시킴으로써 효율을 향상 시킬 수 있음을 확인하였고 종횡비에 따른 해석을 실시한 결과 저온형 개질기의 경우 길이방향보다는 반경방향의 열전달을 증대시키는 방법이 효과적임을 확인하였다.

2 모듈 스택을 이용한 SOFC 시스템 운전결과 (Operation Results of the SOFC System Using 2 Sub-Module Stacks)

  • 이태희
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.405-411
    • /
    • 2010
  • A 5kW class SOFC cogeneration system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a stack, a fuel reformer, a catalytic combustor, and heat exchangers. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. A 5kW stack was designed to integrate 2 sub-modules. In this paper, the 5kW class SOFC system was operated using 2 short stacks connected in parallel to test the sub-module and the system. A short stack had 15 cells with $15{\times}15 cm^2$ area. When a natural gas was used, the total power was about 1.38 kW at 120A. Because the sub-modules were connected in parallel and current was loaded using a DC load, voltages of sub-modules were same and the currents were distributed according to the resistance of sub-modules. The voltage of the first stack was 11.46 V at 61A and the voltage of the second stack was 11.49V at 59A.