• Title/Summary/Keyword: Fuel Reformer

Search Result 189, Processing Time 0.026 seconds

Methodology for removing unreacted low-hydrocarbons in diesel reformate for stable operation of solid oxide fuel cells (안정적인 SOFC 운전을 위한 디젤 개질기 내 미반응 저탄화수소 제거법)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.773-776
    • /
    • 2009
  • In this paper, new concept of the diesel fuel processing is introduced for the stable operation of solid oxide fuel cells (SOFCs). Heavier hydrocarbons than $CH_4$, such as ethylene, ethane, propane, and etc., induce the carbon deposition on anode of SOFCs. In the reformate of heavy hydrocarbons (diesel, gasoline, kerosene, and JP-8), concentration of ethylene is usually higher than low hydrocarbons such as ethane, propane, and butane. So, removal of low hydrocarbons (over C1-hydrocarbons), especially ethylene, at the reformate gases is important for stable operation of SOFCs. New methodology as named "post-reformer" is introduced for removing the low hydrocarbons at the reformate gas stream. Catalyst of the NECS-PR4 is selected for post-reforming catalyst because the catalyst of NECS-PR4 shows the high selectivity for removing low hydrocarbons and achieving the high reforming efficiency. The diesel reformer and post-reformer are continuously operated for about 200 hours as integrated mode. The reforming performance is not degraded and low hydrocarbons in the diesel reformate are completely removed.

  • PDF

Research of High Efficiency Integrated Reforming System Using Separated Reforming System (분리형 개질기를 이용한 고효율 일체형 개질기 개발에 관한 연구)

  • PARK, SANG-HYOUN;KIM, CHUL-MIN;SON, SUNG-HYO;JANG, SE-JIN;KIM, JAE-DONG;BANG, WAN-KEUN;LEE, SANG-YONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • A high efficiency integrated reforming system for improving the efficiency of the 5 kW PEMFC system used as the back up power of building was studied. The separated reforming system consisted of three parts - A steam reformer with two stage concentric circular shape, a heat exchanger type steam generator and a CO shift reactor. Temperature and steam carbon ratio (SCR) were control variables during operation. The operating conditions were optimized based on the thermal efficiency of the steam reformer as reformate gas composition changes at different temperature. In experiments, water was fully vaporized in the steam generator up to SCR 3.5 and the maximum thermal efficiency was achieved at the operating temperature around $700^{\circ}C$ in the steam reforming reactor. With the results of the separated reforming system research, we improved the shape of high efficiency integrated reformer. The performance evaluation of the integrated reformer was based on optimized operating conditions in SCR 3.5. As a result, the developed integrated reforming system maintained an efficiency of 76% and constant performance over 3,000 hours.

Experimental study on self-sustaied $1kW_e$ liquid fuel reforming operation (자립형 $1kW_e$ 액체 연료 개질기 운전에 관한 연구)

  • Yoon, Sang-Ho;Bae, Gyu-Jong;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.503-506
    • /
    • 2008
  • Liquid hydrocarbon fuels, such as gasoline, kerosene, diesel and JP 8, can be good candidates for SOFC (solid oxide fuel cell) system fuel due to their high hydrogen density. Autothermal reforming (ATR) is suitable for liquid hydrocarbon fuel reforming because oxygen can decompose the aromatics in liquid fuel and steam can suppress the carbon deposition during catalytic reaction. The advantage of ATR is that it has a simple system construction due to exothermicity of ATR reaction. We control the exothermicity of reaction, make the reaction possible design a self-sustaining ATR reactor. A self-sustained 1kW-class kerosene autothermal reformer is introduced in this paper. The 1kW-class kerosene reformer was continuously operated for about 140 hours without degradation of reforming performance.

  • PDF

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.53-78
    • /
    • 2013
  • Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.

Combustion Characteristics in a Two-staged Microcombustor for a Micro Reformer System (초소형 리포머용 2단 초소형 연소기 내 연소특성에 관한 연구)

  • Kim, Ki-Baek;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2238-2243
    • /
    • 2007
  • A new microcombustor configuration for a micro fuel-cell reformer integrated with a micro evaporator was studied experimentally and computationally. The present microcombustor is simply cylindrical to be easily fabricated but two-staged, expending downstream, to feasibly control ignition and stable burning. Results show that the aspect ratio of the first stage and the wall thickness of the microcombustors substantially affect ignition and thermal characteristics. For the optimized design conditions, a premixed microflame was easily ignited in the expanded second stage combustor, moved into the smaller first stage combustor, and finally stabilized therein. The measured and predicted temperature distributions across the microcombustor walls indicated that heat generated in the microcombustor is well transferred. Thus, the present microcombustor configuration could be applied to the practical micro reformers integrated with a micro evaporator for use of fuel cells.

  • PDF

Application Research on LPG Injector type Plasma Reformer (LPG 인젝터형 플라즈마 개질기 적용연구)

  • Kim, Changup;Lee, Deahoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, plasma reformer technology with a LPG injector was investigated. It was developed with injection of LPG fuel and air in a region where the plasma discharge to make the thermal decomposition carbon fuel and to generate additional hydrogen. As a result of reforming test, when power is 70~100W supply, about HC 0.7% of the full reformed gas and hydrogen was generated from 1.2 to 1.5 %.

NUMERICAL STUDY OF STREAM REFORMER AND PRECONVERTER FOR MCFC (MCFC용 개질기 및 프리컨버터의 수치연구)

  • Byun, Do-Hyun;Sohn, Chang-Hyun
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, various operating parameters of stream reforming process from methane in stream reformer and preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature and different reactor shapes. The calculated results of the concentration of hydrogen in stream reformer are very well consistent with experimental results. This numerical study gives the design reactor wall temperature condition and size of reactor to satisfy the required fuel conversion.

Numerical study on operating parameters of autothermal reformer for hydrogen production (수소생산을 위한 자열개질기 작동조건의 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.507-510
    • /
    • 2008
  • Characteristics of an autothermal reformer at various operating parameters have been studied in this paper. Numerical method has been used, and simulation model has been developed for the analysis. Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction are assumed as dominant chemical reactions in the autothermal reformer. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Veolcity(GHSV). SR reaction rate decreases with low inlet temperature. If OCR is increased, $H_2$ yield is increased but optimal point is suggested. WGS reaction is activated with high SCR. When GHSV is increased, reforming efficiency is increased but pressure drop may decrease the system efficiency.

  • PDF

A Study on the Evaporator Shape for the Heat Transfer Performance of Fuel Cell Reformer (연료전지 개질기용 증발기 열교환 성능을 위한 증발기 형상에 관한 연구)

  • Suh, Ho-Cheol;Kim, Kyu-Jun;Noh, Hyung-Chul;Park, Kyoung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2011
  • Steam reformer was organized with steam reforming process and CO removing process. The steam reforming process needed high temperature, 600~900 $^{\circ}C$, for catalytic-reaction which was extract of hydrogen from steam and hydrocarbon. The effects of the evaporator configuration on its heat transfer characteristics were investigated both experimentally and numerically to pursue the miniaturization. In this study, three configurations were considered where the different structures were tested; empty, embossing and mesh filled. For the comparison of heat transfer performance of shape evaporator disk, numerical analysis using SC-Tetra code and experiment were carried out. In case of reformer system design, it should be considered heat transfer rate, differential pressure and fluid flow direction.

A Study on Thermal and Mechanical Behaviors of Micro Reformer (마이크로 리포머의 열 및 역학적 거동 분석)

  • Hwang W.H.;Jang J.H.;Kil J.H.;Kim S.J.;Lee R.W.;Kim S.H.;Chung K.H.;Oh Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.235-239
    • /
    • 2005
  • We analyzed the thermal and mechanical behaviors of micro reformer for the purpose of design verifications and modification of micro channels. The reformer designed for hydrogen generation from methanol is essential to PEM(Proton Exchange Membrane) type fuel cell. For the mobile applications, the size and the simplicity would be the most critical issues. We utilized silicon process for micro reformer to obtain the thickness thinner than 2 mm thick. We have used commercial simulation software, IDEAS, to analyze the thermal and mechanical characteristics of micro reformer structure. The heat generation rates of heaters, heat transfer rates, and fluid temperatures are derived from thermal equilibrium relation and these values were used for thermal boundary conditions. We also analyzed the thermal stresses, thermal deformations to examine the possibility of failure.

  • PDF