• Title/Summary/Keyword: Fuel Property

Search Result 378, Processing Time 0.024 seconds

A Study on the Performance of EFI Engine Used Ultrasonic Energy Adding Fuel System(I) -Attaching Importance to Fuel Characteristics for Ultrasonic- (초음파연료공급장치를 이용한 EFI 기관의 성능에 관한 연구(I) -초음파에 의한 연료의 물성변화를 중심으로-)

  • 윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-49
    • /
    • 1997
  • This experimental study was performed to find fuel property variations of the ultrasonic energy adding gasoline and improve the spray characteristics of the multipoint injector for EFI engine. The cause and effect of the characteristic improvement of the ultrasonic energy adding fuel was found out by the chemical structure analysis (NMR, IR), distillation and viscosity test. The results are obtained that the chemical property of gasoline organizition was changed aromatics to paraffins and branch index as the physical characteristics of gasoline were improved by ultrasonic energy. There were higher distillation and lower viscosity in ultrasonic energy adding gasoline.

  • PDF

Effect of Gasoline Property Change on Exhaust Gas and Catalyst (휘발유 물성변화에 따른 배출가스 및 촉매에 미치는 영향성 연구)

  • Noh, Kyeong-Ha;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.67-73
    • /
    • 2018
  • Gasoline that meets the quality standards is distributed in Korea. However, consumers who use toluene or solvent mixed with gasoline have appeared due to rising crude oil prices and for the purpose of tax evasion. Gasoline quality standard is enacted by the domestic and international research reference. A wrong fuel can influence automobile performance or environmental issue. Thus, empirical data from this issue is necessary. Therefore, this research observed catalyst influence by gasoline property change and inspect influence of environment. In this study, fuel property evaluation, lean-burn evaluation, and real vehicle exhaust emission test were performed. In the result of fuel property, the fuel "A" was measured to be up to 27% less octane than the normal gasoline and the distillation property was measured 24% higher than normal gasoline. In the test result of single cylinder engine lean-burn test, the fuels "A" and "B" show torque value 20% less than the normal gasoline. As a result of vehicle test using the catalyst, the fuel "A" was increased more than the normal gasoline with 83% THC, 1,806% CO and 128% NOx, and the fuel "B" was increased more than normal gasoline with 1.6% THC, 391% CO and 142% NOx.

Embrittlement Behavior of Zirconium Alloy in Quenching Heat Treatment (급랭 열처리시 지르코늄 합금의 취성 거동)

  • Kim, Jun Hwan;Lee, Jong Hyuk;Choi, Byoung Kwon;Jeong, Yong Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.4
    • /
    • pp.216-222
    • /
    • 2004
  • Study was focused on the quenching embrittlement property of Zircaloy-4 cladding simulated Loss Of Coolant Accident (LOCA) environment in terms of high temperature oxidation and phase transformation. Property in LOCA condition of advanced cladding that contained Nb element was also investigated. Claddings were oxidized at given temperature and given time followed by water quenching. The results showed that ${\beta}$ phase which formed at quenching stage has an influence on cladding property. In case of advanced cladding, Nb retards cladding oxidation, thus enhances quenching resistance.

Durability Properties of Liquid Phase LPG Injection System with Various Qualities of LPG Fuels (LPG연료품질에 따른 LPG액상분사방식의 내구특성연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-78
    • /
    • 2004
  • The liquid phase LPG injection (LPLi) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system. To investigate the durability property of core part of injector in liquid phase LPG injection system, leakage test, SEM test of injectors and analysis of unvaporized fuel components with various LPG fuel qualities were tested. The experimental results showed that no serious problem in durability test using favorable LPG fuel quality, while high leakage amount due to the large scratches in the needle and nozzle of the injector were found using LPG fuel with highly containing olefin components, especially butadiene species.

Temperature and Heat Split Evaluation of Annular Fuel (이중냉각핵연료 온도 및 열유속 분리 평가)

  • Yang, Yong-Sik;Chun, Tae-Hyun;Shin, Chang-Hwan;Song, Kun-Woo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2236-2241
    • /
    • 2008
  • The surface heat flux of nuclear fuel rod is the most important factor which can affect safety of reactor and fuel. If fuel rod surface heat flux exceeds the CHF(${\underline{C}}ritical$ ${\underline{H}}eat$ ${\underline{F}}lux$), fuel can be damaged. In case of double cooled annular fuel, which is under developing, contains two coolant channels. Therefore, a generated heat in the fuel pellet can move to inner or outer channel and heat flow direction is decided by both sides heat resistance which varied by dimension and material property change which caused by temperature and irradiation. The new program(called DUO) was developed. For the calculation of surface heat flux, a both sides convection by inner/outer coolant, s gap temperature jump and conduction in the fuel are modeled. Especially, temperature and time dependent fuel dimension and material property change are considered during the iteration. A sample calculation result shows that the DUO program has sufficient performance for annular fuel thermal hydraulics design.

  • PDF

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell (고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성)

  • Baek, Seung-Wook;Kim, Jung-Hyun;Baek, Seung-Whan;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

Analysis of fuel economy characteristics depending on the fuel quality and calculation method changed (연료품질 및 연비계산 방법 변화에 따른 연비특성 분석)

  • Lee, Min-Ho;Lim, Wan-Gyu;Lim, Jae-Hyuk;Kim, Ki-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.52-62
    • /
    • 2016
  • Nowadays, emissions of a vehicle are been getting by testing on a chassis dynamometer and a test modes. Also, fuel efficiency is calculated by carbon-balance method that is applying the emissions(CO, THC and $CO_2$) to the fuel calculation formular. In Korea, before 2014, the formular did not include the fuel factors (density, net heat value and carbon weight fraction), but the constants were based on the fuel properties of 2000s. So, this formular did not consider a characteristic of test fuel property that was changed when progressing fuel efficiency test. The characteristics of test fuel property which was distributed in domestic have a difference of quality depending on production regions and oil-refining facilities. Because the fuel properties are variable value during refineries, crude oils and blending contents of a bio-fuel, vehicle fuel is changed for each test. Therefore, the fuel qualities need to apply for a fuel economy test. In this paper, changing patterns of a fuel properties were reviewed during history of fuel standards. Also, the appropriateness of the methods was discussed by calculating and comparing fuel economies with the fuel factors and the constants.

MULTI-RUN EFFECTS ON THE SOLID FUEL RAMJET COMBUSTION

  • Tae-Ho Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.3-8
    • /
    • 1995
  • An experimental investigation was conducted in order to figure out the multiple fire effects on the combustion efficiency and fuel properties of the solid fuel ramjet. Pure HTPB and metallized $B_4$C/HTPB fuel were studied. Fuel property effects were analyzed by using differential scanning calorimetry, The thermal or mechanical properties of the fuel grain were not affected and the combustion efficiency was a little increased.

  • PDF

Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석)

  • Ha, Taehun;Cho, Junhyun;Park, Jaeman;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF