• Title/Summary/Keyword: Fuel NOx

Search Result 933, Processing Time 0.023 seconds

The Operation Characteristics of Domestic 1kW Gas Fueled Internal Combustion Engine Cogeneration System (1kW급 가스엔진 열병합발전시스템 성능특성에 관한 연구)

  • Choi, Jae-Joon;Park, Byung-Sik;Jung, Dae-Heon;Im, Yong-Hoon;Choi, Young-Ho;Song, Dae-Sup
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.321-324
    • /
    • 2009
  • The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and recently, the household cogeneration system has been the center object of attention because of the loss of power transmission and the reasonable energy consumption relative to the household (condensing) boiler producing heat only. A tiny, 1kW of electrical output, gas fueled internal combustion engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. With the emission characteristics, the cogeneration system was analyzed. It was showed the gas engine cogeneration system produced the lowest NOx level compared any other cogeneration system due to the three-way catalyst.

  • PDF

Performance Test and Flue Gas Characteristics of a 350 kW Wood Pellet Boiler (350 kW(300,000 kcal/h)급 우드 펠렛 보일러 운전 특성 및 성능 평가)

  • Kim, Jong-Jin;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.167-171
    • /
    • 2009
  • We conducted performance test of a 350 kW class wood pellet boiler installed at a dormitory whose total area is $1,354\;m^2$. The maximum heating capacity of the boiler is 350 kW(300,000 kcal/kg). The wood pellet boiler consists of 3 parts; boiler, hot water storage tank and wood pellet storage tank. In testing the boiler, we shut off hot water utility supply and open up floor heating water system in order to measure exact value of the heating output of the wood pellet boiler. To determine the efficiency and heating output of the wood pellet boiler, we measured mass flow rate of wood pellet, the lower heating value(LHV) of the wood pellet, mass flow rate and temperature of water for floor heating and so on. We measured the mass flow rate of fuel, wood pellet with respect to rotational speed of auger, wood pellet feeding screw. We also measured the flue gas concentration of the wood pellet boiler by using a gas analyser. The result shows that the efficiency of the wood pellet boiler is 80.6% based on lower heating value at 124 kW of heating output. At this condition, O2 concentration of the flue gas is 6.0%, CO and NOx concentrations are 85 and 102 ppm.

  • PDF

Effect of DPF Regeneration on Emission Characteristics in Diesel Engines (DPF 재생이 경유자동차 배출특성에 미치는 영향)

  • Moon, Taeyoung;Son, Jihwan;Yun, Hyunjin;Hong, Heekyoung;Choi, Kwangho;Kim, Jeongsoo;Kim, Heekyoung
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.142-148
    • /
    • 2014
  • In this study, characteristics of gaseous pollutants and particulate matter were investigated on the condition of DPF regeneration and normal DPF condition. THC, CO, $CO_2$, NOx, and $CH_4$ were analyzed by MEXA-7200H and CVS-7100 respectively. Particulate Matter (PM) was measured by difference in weight of Membrane filter. Particle Number (PN) was measured by CPC analyzer. And Sulfate, Nitrate, Organic were measured by Aerosol Mass Spectrometer (AMS). As a result, gaseous pollutants and particulate matter were detected in higher concentration during DPF regeneration than normal DPF condition. And the PN increased by 94%, the fuel consumption was reduced by 29% on DPF generation process. Sulfate, Nitrate and Organic were undetectable level during normal DPF condition. But the highest concentration of Sulfate, Nitrate and Organic were measured as $100{\mu}g/m^3$, $20{\mu}g/m^3$ and $15{\mu}g/m^3$ respectively on DPF regeneration condition. VOCs concentrations (Benzene, Toluene, Ethylbenzene, Xylene) were analyzed by using PTR-MS. Benzene and Toluene emission have little or no change depending on DPF regeneration. But the Ethylbenzene and Xylene have comparatively low emissions on DPF regeneration.

A Study of NO Formation Characteristics in Laminar Flames Using 2-D LIF Technique (2-D LIF를 이용한 층류화염의 NO 생성특성에 관한 연구)

  • Lee, Won-Nam;Cha, Min-Suk;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.38-48
    • /
    • 2003
  • OH, CH and NO radical distributions have been measured and compared with the numerical analysis results in methane/air partially premixed laminar flames using 2-D LIF technique. The pick intensity of OH LIF signal is insensitive to fuel equivalence ratio: however, CH LIF intensity decreases as equivalence ratio increases and the NO concentration increases with equivalence ratio. The contribution of the prompt NO, formed near premixed reaction zone, to the total NO formation is evident from the OH, CH, and NO PLIF images in which the dilution effect of nitrogen is minimal for the highest equivalence ratio. Measured OH and NO LIF signals in counterflow flames agree with the computed concentration distributions. Both numerical and experimental results indicate that the structural change in a flame alters the NO formation characteristics of a partially premixed counterflow flame. The nitrogen dilution also changes flame structure, temperature and OH radical distributions and results in the decreased NO concentrations in a flame. The levels of decrease in NO concentrations, however, depends on the premixedness(${\alpha}$) of a flame. The larger change in the flame structure and NO concentrations have been observed in a premixed flame(${\alpha}=1.0$), which implies that the premixedness is likely to be a factor in the dilution effect on NO formation of a flame.

  • PDF

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine (3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향)

  • Choi, Wook;Park, Cheol-Woong;Kook, Sang-Hoon;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

The evaluation of diesel emission reduction characteristics by DOC in light-duty vehicle (소형디젤산화촉매의 배출가스 성능평가)

  • 엄명도;류정호;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.34-42
    • /
    • 1999
  • In late 1997, the portion of registered light-duty diesel vehicle was 25.3% and its emission rate was 17.1% in Korea. Especially, diesel particulate matters(DPM) and NOx are hazardous air pollutants to human health and environment in urban area. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust after treatment , In this study , a light-duty diesel oxidation catalyst(DOC) that is one of the diesel exhaust after treatment was made for performance evaluation and the emission characteristics were tested on CVS-75 mode. And the analysis of the particle size distribution with scanning mobility particle 100, 67.6% and 66.7, 10.0% for Pt and Pt-V catalyst .And for Pt catalyst, the PM increased 7.8% because of increasing sulfate but Pt-V catalyst reduced the PM to 23.0% . Test results of particle size distribution showed that peak values of number and mass densities are respectively 100∼200nm their distribution trend independent of vehicle speed.

  • PDF

Effects of Port Masking on Emission (포트 마스킹이 엔진의 배기에 미치는 영향)

  • Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

Comparison of Correlation between CVS-75 Mode and Korea Mode to Estimate Emission Factors from Vehicles (자동차 오염물질 배출계수 산정을 위한 CVS-75모드와 국내차속모드의 상관성 비교 연구)

  • Jung, Sung-Woon;Ryu, Jeong-Ho;Lyu, Young-Sook
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.383-391
    • /
    • 2006
  • In Korea, the major source of serious air pollution is motor vehicles. Air pollution from vehicles has been annually increased. Then the government will try to control the vehicle emission by applying the effective emission management policy for the manufactured and in-used car. It is necessary to correctly calculate the emission factor for successful propulsion of the vehicle emission control policy. In this study, correlation analysis of exhaust emissions from vehicles between CVS-75 mode and Korea mode was conducted. A total of 25 light-duty buses were tested on the chassis dynamometer system in order to measure CO, HC, NOx PM and fuel efficiency (F.E.). For the test modes, 10 different Korea modes and CVS-75 mode were used. As the result of correlation analysis between those modes, most of the correlation coefficients were higher than 0.90. On the basis of high correlation between those modes, correction factors by driving conditions were estimated. Through the results of this study, we obtained essential basic data to correct difference from those modes.