• Title/Summary/Keyword: Fuel Electrode Catalyst

Search Result 166, Processing Time 0.029 seconds

Fuel-Flexible Anode Architecture for Solid Oxide Fuel Cells

  • Hwan Kim;Sunghyun Uhm
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.226-240
    • /
    • 2023
  • This paper provides an overview of the trends and future directions in the development of anode materials for solid oxide fuel cells (SOFCs) using hydrocarbons as fuel, with the aim of enabling a decentralized energy supply. Hydrocarbons (such as natural gas and biogas) offer promising alternatives to traditional energy sources, as their use in SOFCs can help meet the growing demands for energy. We cover several types of materials, including perovskite structures, high-entropy alloys, proton-conducting ceramic materials, anode on-cell catalyst reforming layers, and anode functional layers. In addition, we review the performance and long-term stability of cells based on these anode materials and assess their potential for commercial manufacturing processes. Finally, we present a model for enhancing the applicability of fuel cell-based power generation systems to assist in the realization of the H2 economy as the best practice for enabling distributed energy. Overall, this study highlights the potential of SOFCs to make significant progress toward a sustainable and efficient energy future.

Effect of Nafion Membrane Etching for Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지에서 Nafion막 에칭의 영향)

  • Park Kwon Pil;Cho Gyou Jin;Lee Gun Jik;Chun Hai Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.190-194
    • /
    • 1999
  • Etched Nafion membrane and electrode assemblies were fabricated and those performances were observed in PEMFC. Adhesion of membrane to electrode increased with abrasion of membrane surface. Membrane surface ething results in reduction of hot pressing temperature, as a consequence, in improving of cell performance. It was found that Nafion etching was effective in painting method. The optimum content of electrode catalyst should be selected according to etching intensity.

I-V Characteristics of a Methanol Sensor for Direct Methanol fUel Cell(DMFC) as a Function of Deposited Platinum(Pt) Thickness (직접 메탄올 연료전지용 메탄올 센서의 백금 두께의 변화에 따른 전류-전압 특성 변화)

  • Yang, Jin-Seok;Kim, Seong-Il;Kim, Chun-Keun;Park, Jung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2007
  • The direct methanol fuel cell (DMFC) is a promising power source for portable applications due to many advantages such as simple construction, compact design, high energy density, and relatively high energy-conversion efficiency. In this work, an electrochemical methanol sensor for monitoring the methanol concentration in direct methanol fuel cells was fabricated using a thin composite nafion membrane as the electrolyte. We have analyzed the I-V characteristic of the fabricated methanol sensor as a function of methanol concentration, catalyst electrode and platinum(Pt) thickness. The fabricated sensor was analyzed by I-V measurement with various methanol concentration. When we measured the sensor characteristics with 10nm Pt and at 1V, the current value was $1.30{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;2.80{\times}10^{-6} A$ for three methanol concentration of 1M, 2M and 3M, respectively. When the methanol concentration was fixed at 2M, the current value of the fabricated device with Pt layers of 5, 10 and 15 nm thickness was $3.06{\times}10^{-6}A,\;1.96{\times}10^{-6}A\;and\;1.00{\times}10^{-6}A$, respectively. These results lead us to the conclusion that when the methanol concentration increases, the output current increases and when the catalyst electrode become thinner, the current increase more. It showed that, the thinner the catalyst electrode, the more electrochemistry become activation.

  • PDF

Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell

  • Shabani-Shayeh, Javad;Ehsani, Ali;Jafarian, Majid
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • Methanol electro oxidation on the surface of carbon paste modified by $NiCl_2/6H_2O$ was studied in 1M NaOH by potentiostatic and potentiodynamic methods. Ni/C catalyst by the concentration of 5% Ni showed about twice higher electro catalytic activity than Ni metal. The amount of monolayer's on the surface of electrode is almost one order higher for Ni/C than Ni electrode. The kinetic parameters and the diffusion coefficient of methanol were derived from chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements.

Study of the Electrode Catalyst for Direct Borohydride Fuel Cel (알칼리 붕소 수소화물 직접이용 연료전지에서의 전극촉매 연구)

  • Jun Chang-Sung;Song Kwang Ho;Kim Sung Hyun;Lee Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.299-302
    • /
    • 2005
  • Direct Borohydride Fuel Cell은 알칼리 붕소 수소화물의 수용액을 이용하는 연료전지로 연료의 직접 산화반응을 통해 기존의 DMFC(직접 메탄을 연료전지)보다 높은 전류밀도와 OUV(Open Circuit Voltage)를 나타낸다. 또한 액체 연료를 사용하므로 장치 구성이 간단하며, 사용하는 연료가 반응성이 높은 알칼리 붕소 수소화물로 이루어져 있기 때문에 탄화수소 계열의 액체 연료와 달리 전기화학 반응이 비귀금속 전극에서도 쉽게 이루어질 수 있다는 장점을 가지고 있다 하지만 강알칼리 조건에서 전기화학 반응이 진행되므로 이에 적합한 재료로 장치를 구성해야 하며, 액체 상태의 연료가 전해질을 투과하는 현상인 크로스오버 문제를 해결해야 하고, 생성물인 $BO_2$-가 침적되어 전지효율을 떨어뜨리는 것을 방지해야 하는 문제점이 있다. 또한 알칼리 붕소 수소화물이 물과 반응하여 수소를 발생시키는 hydrolysis 반응을 억제하여야 하고 직접 산화반응만이 진행될 수 있도록 전지를 구성해야 연료효율을 높일 수 있다. 따라서 본 연구에서는 수소 생성반응일 hydrolysis 반응은 억제하고 연료의 직접 산화반응만을 진행시키기 위한 전극촉매에 대하여 연구하였다. 일반적인 저온형 연료전지의 전극촉매로 사용하는 Pt등의 귀금속 촉매와, 귀금속 촉매를 대체할 수 있는 Ni등의 비귀금속 촉매를 그 연구 대상으로 하였으며, 평가 방법으로는 unit cell station을 이용한 단위전지 성능측정 실험과 Potentiostat/Galvanostat을 이용한 half cell 실험을 병행하여 수행하였다.

  • PDF

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs (고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석)

  • Zhang, Yan;Lee, Ji-Jung;Park, Gyung-Se;Lee, Hong-Ki;Shim, Joong-Pyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.

Preparation of Platinum catalysts for PEM Fuel cells

  • Sasikumar G.;Ryu H.
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.189-192
    • /
    • 2003
  • In this work, we have prepared platinum catalyst by various methods, investigated fuel cell performance and compared performance with commercially available $20\%$ Pt supported on carbon (Pt/C) catalyst. We have found that Pt/C prepared by reduction of chloroplatinic acid in mixed solvent (water+ethylene glycol) gives better performance compared to that produced by reduction of aqueous chloroplatinic acid, which can be attributed to smaller catalyst particle size and lower agglomeration in the mixed solvent. We have also prepared a novel platinum electrocatalyst by depositing platinum on Nafion coated carbon powder and it shows great promise. The performance of electrode prepared using $20\%Pt$ onn Nafion coated carbon mixed with Pt/C was found to be higher than the performance of electrodes using commercially available $20\%$ Pt/C, up to a current density of about $1100mA/cm^2$. The cell voltages obtained were respectively 621 and 603mV, at a current density of: $1000mA/cm^2$, in a single cell using $0.25mgPt/cm^2$ and Nafion 10035 membrane at $80^{\circ}C$ using hydrogen/oxygen reactants at 1 atm pressure.

  • PDF

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells (AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Jung, Nam-Gee;Ahn, Min-Jeh;Kang, Yun-Sik;Chung, Dong-Young;Lim, Ju-Wan;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.