• 제목/요약/키워드: Fuel Cost Competitiveness

검색결과 27건 처리시간 0.023초

Systems Analyses of Alternative Technologies for the Recovery of Seawater Uranium

  • Byers, Margaret Flicker;Schneider, Erich;Landsberger, Sheldon
    • 방사성폐기물학회지
    • /
    • 제16권3호
    • /
    • pp.369-376
    • /
    • 2018
  • The ability to recover the nearly limitless supply of uranium contained within the world's oceans would provide supply security to uranium based fuel cycles. Therefore, in addition to U.S. national laboratories conducting R&D on a system capable of harvesting seawater uranium, a number of collaborative university partners have developed alternative technologies to complement the national laboratory scheme. This works summarizes the systems analysis of such novel uranium recovery technologies along with their potential impacts on seawater uranium recovery. While implementation of some recent developments can reduce the cost of seawater uranium by up to 30%, other researchers have sought to address a weakness while maintaining cost competitiveness.

천연가스(CNG)버스 보급정책의 타당성 제고를 위한 연구 (Economics Approach on Validity of CNG Bus Promotion Policy)

  • 신원식
    • 한국가스학회지
    • /
    • 제22권5호
    • /
    • pp.114-123
    • /
    • 2018
  • 우리나라의 대기 질 악화현상을 개선하기 위하여 정부에서는 수송부문에 있어서 경유자동차를 대체하는 친환경차량의 보급 필요성을 인식하여, 지난 2000년대부터 천연가스(CNG: Compressed Natural Gas)버스의 보급정책을 실시하여 왔다. 이에 따라 수도권 및 대도시를 중심으로 CNG버스의 보급량이 지속적으로 증가되어 왔다. 그러나, 2014년도 이후 CNG버스의 증가세가 감소하고 경유버스의 감소세가 둔화되는 등 부침을 겪어 왔다. 본 연구에서는 CNG버스 보급정책의 지속적 추진에도 불구하고 CNG버스 구매 량이 꾸준히 증가하지 못했던 원인과 관련하여 그간 선행연구에서 추정에 그쳐왔던 '경유와 CNG의 연료비 차이가 CNG버스 보급량에 미치는 영향'을 회귀분석으로 검증하였다. 아울러 이러한 문제점에 대하여 정부 부처간 서로 다른 정책목표간 조화 필요성을 제시하는 한편, 경유대비 CNG의 연료가격 경쟁력을 높이기 위한 해결방안을 제시함으로써 CNG 버스 보급정책의 타당성을 제고하였다. 이는 앞으로 정부의 LNG화물차 및 무공해차량(Zero Emission Vehicle)을 대상으로 한 친환경자동차 보급 정책을 추진함에 있어서도 새로운 기준으로 추가되어야 할 것이다.

신재생 에너지와 기존 발전기술과의 투자리스크 요인별 민감도 비교 (The Sensitivity Comparison of Each Risk Factors Analysis on Renewable Energy and Other Generating Technologies)

  • 고경호;박세익
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.10-17
    • /
    • 2011
  • Recently, electricity industry is facing high market uncertainty which has ever had and which increase risks in power market. In this study, we analyze risk factors such as discount rates, initial investment (overnight cost), plant factor, fuel cost, carbon price, etc, for the perspective of investor. For the analysis of risk factors, we used LCOE method. The results of this study show that renewable energy is more affected by plant factor and overnight cost than other risk factors. First, Renewable energy has higher proportion of overnight cost in the total investment than that of other technologies. Second, renewable energy is free of fuel cost and carbon price so plant factor is the most important factor, in other words, competitiveness of renewable energy depends on plant factor. Furthermore, we conducted economic feasibility of wind power and PV in domestic case study. The minimum requirement condition to get profitability is that plant factor 15% and overnight cost \6,000,000/kW and 26%, \2,200,000/kW for PV and Wind Power, respectively.

자동차용 플라스틱 연료튜브의 복합 벤딩에 대한 스프링백 (Spring Back on the Compound Bending of the Plastic Fuel Tube for Automobile)

  • 문찬용;박정식;정영득
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.51-55
    • /
    • 2003
  • Recently the requirements for light weight and high performance of the automobile have increased. Especially, the plastic fuel tube makers have made their efforts to dove]op the various plastic fuel tube module with not only dimensional accuracy but also cost competitiveness. The experiment is performed to investigate spring backs for PA12 plastic fuel tubes in case of compound bending. In the experiment, steam bending process is adopted as bending method. In this study, the results we obtained are used to design the bending fixtures and the compound bending system.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review

  • Lee, Mi Gyoung;Park, Jong Seong;Jang, Ho Won
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.185-202
    • /
    • 2018
  • Photoelectrochemical (PEC) cells can convert solar energy, the largest potential source of renewable energy, into hydrogen fuel which can be stored, transported, and used on demand. In terms of cost competitiveness compared with fossil fuels, however, both photocatalytic efficiency and cost-effectiveness must be achieved simultaneously. Improvement of cost-effective, scalable, versatile, and eco-friendly fabrication methods has emerged as an urgent mission for PEC cells, and solution-based fabrication methods could be capable of meeting these demands. Herein, we review recent challenges for various nanostructured oxide photoelectrodes fabricated by solution-based processes. Hematite, tungsten oxide, bismuth vanadate, titanium oxide, and copper oxides are the main oxides focused on, and various strategies have been attempted with respect to these photocatalyst materials. The effects of nanostructuring, heterojunctions, and co-catalyst loading on the surface are discussed. Our review introduces notable solution-based processes for water splitting photoelectrodes and gives an outlook on eco-friendly and cost-effective approaches to solar fuel generation and innovative artificial photosynthesis technologies.

심야전력 보급증가와 부하패턴 및 발전비용의 영향 (Analysis of Load Pattern and Generation Cost in Midnight Power Services)

  • 김창수;이창호;박종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.547-549
    • /
    • 2001
  • Recently, heating using oil and gas has been continuously replaced by that using midnight power in home, due to increase of oil price. Therefore, midnight power apparatus has been more and more spreading. However, cost of midnight power services is increasing because high fuel cost of generation facilities by existing power generation mix are charge of midnight power services. This paper analyzes trends about rapidly increasing midnight power in winter, and evaluate load pattern and supply cost of midnight power. Also, this study proposes rate direction of midnight power according to introduction of competitiveness system with B/C evaluation of midnight power cost.

  • PDF

PA120 튜브의 스프링 백에 관한 연구 (A Study in the PA12 Tube Spring-back)

  • 김대식;문찬용;김상우;최형태;정영득;김영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.825-828
    • /
    • 1997
  • The market share of plastic fuel tube in automobile part is now growing rapidly. Especially fuel tube makers have had their efforts to develop tube module not only with dimensional accuracy, spring back and cost competitiveness. In this study, we used steam bending process for heat relaxation on PA12 plastic fuel tube's 128 types experimental bending conditions. we present the results of this process system in term of dimensional accuracy, and spring back.

  • PDF

6kW급 태양열 온수급탕 시스템의 실증실험 및 분석 (제4보 경제성비교 및 경쟁력강화) (Verification Experiment and Analysis for 6kW Solar Water Heating System (Part 4 : Comparing Economics and Raising Competitiveness))

  • 이봉진;강채동;이상렬;홍희기
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.232-242
    • /
    • 2005
  • It has been recognized that solar water heating systems are economically inferior to conventional gas water-heaters and boilers using light oil as fuel in spite of having practical possibilities among other alternative energy facilities in Korea. The solar system, however, should be revaluated due to the sharp rise of oil prices recently. We have calculated the energy amount and cost through a series of research projects for the system by experiment and simulation, which lead to analyzing reliable life cycle costs. For the economic analysis, the gas water-heater and light oil boiler were taken as base cases while the solar systems implemented with these facilities were compared as alternatives. As a result, the solar system using the light oil as an auxiliary fuel surpassed the light oil boiler in economics. And a $50\%$ government subsidy for the initial cost is needed to maintain competitiveness with the gas hot-water heater. With this support, the simple payback period of the system can approach 12.8 years under $20\%$ additional curtailment of expenditure.

Optimization of structural elements of transport vehicles in order to reduce weight and fuel consumption

  • Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.283-290
    • /
    • 2019
  • In global competition manufacturing companies have to produce modern, new constructions from advanced materials in order to increase competitiveness. The aim of my research was to develop a new composite cellular plate structure, which can be primarily used for structural elements of road, rail, water and air transport vehicles (e.g. vehicle bodies, ship floors). The new structure is novel and innovative, because all materials of the components of the newly developed structure are composites (laminated Carbon Fiber Reinforced Plastic (CFRP) deck plates with pultruded Glass Fiber Reinforced Plastic (GFRP) stiffeners), furthermore combines the characteristics of sandwich and cellular plate structures. The material of the structure is much more advantageous than traditional steel materials, due mainly to its low density, resulting in weight savings, causing lower fuel consumption and less environmental damage. In the study the optimal construction of a given geometry of a structural element of a road truck trailer body was defined by single- and multi-objective optimization (minimal cost and weight). During the single-objective optimization the Flexible Tolerance Optimization method, while during the multi-objective optimization the Particle Swarm Optimization method were used. Seven design constraints were considered: maximum deflection of the structure, buckling of the composite plates, buckling of the stiffeners, stress in the composite plates, stress in the stiffeners, eigenfrequency of the structure, size constraint for design variables. It was confirmed that the developed structure can be used principally as structural elements of transport vehicles and unit load devices (containers) and can be applied also in building construction.