• Title/Summary/Keyword: Fuel Cost

Search Result 1,177, Processing Time 0.031 seconds

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

A Study on the Climate Change and the Policy of Natural Gas Exploitation on the Arctic Region (기후변화와 북극 유·가스전 개발에 관한 연구)

  • Kim, Boyoung;Ryu, Siho;Park, Yonhe
    • Environmental and Resource Economics Review
    • /
    • v.18 no.4
    • /
    • pp.787-813
    • /
    • 2009
  • Because of global warming, the thawing of the Arctic ice cap is slowly accelerating. That is the hot issue nowadays. According to the each country's climate change policy, it is boom in the world to lessen the consuming of the fossil fuel those are oil, coal and natural gas. But on the contrary the thawing of the Arctic ice cap is the chance to make the natural gas producing unit cost lower. The purpose of this paper is to search the Arctic policy of each country under the contradictory relationship between promoting the climate change policy and exploiting the natural gas on the Arctic. Specially, there are huge natural gas reserves in Russia on the Arctic region, Russia's exploiting the natural gas on the Arctic will affect on the natural gas supply-demand balance of world natural gas market strongly in the future. Therefore it needs to prepare the future energy alternative policy for Korea's energy security. Russia has Yamal Peninsular where is abundant on natural gas reserver, and she can supply natural gas by LNG ship all over the world via the Arctic route. This means that the structure of world natural gas market be changed gradually. It will be possible in 2030~2040. And such a change is very important because new natural gas trading type can do it through not only overcoming the geological restriction but also shifting the main trading type from PNG(Pipeline Natural Gas) to LNG(Liquified Natural Gas). Therefore it is necessary that we should let this be a good lesson to ourselves through the government action of other countries (China, Japan) those also have no sovereignty over the Arctic as Korea.

  • PDF

Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) (미생물 전기화학 기술이 적용된 단일 혐기성소화조에서 전극재질에 따른 바이오가스 생성 효율 평가)

  • Shin, Wonbeom;Park, Jungyu;Lee, Beom;Kim, Yonggeun;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.82-88
    • /
    • 2017
  • MET (Microbial Electrochemical Technology), such as MFC (Microbial Fuel Cell) and MEC (Microbial Electrolysis Cell), is a promising technology for producing sustainable biogas from an anaerobic digester (AD). At current stage, however, the most likely limiting factors, large internal resistances, should be overcome for successful scale up of this technology. Various researchers reported that application of electrode materials containing high current density, increase of ion strength and conductivity, configuration of electrode are good methods for minimizing internal resistances. Recently, stainless steel is receiving great attention because of not only high performance and durability but also low cost. Therefore, in this study, we evaluate electrochemical characteristics and biogas production rate using various electrode materials and configuration (graphite carbon coated with catalysts ($GC-C_M$) or not (GC), stainless steel mesh (SUS-M) and plate (SUS-P)). As the results, current densities of $GC-C_M$, GC, SUS-P, SUS-M were 2.03, 1.36, 1.04, $1.13A/m^2$, respectively. Methane yields of $GC-C_M$, GC, SUS-P, SUS-M were 0.27, 0.14, 0.19, 0.21 $L-CH_4/g-COD_{rem}$., respectively. Stainless steel shows high current density and methane yield, which are similar as graphite carbon coated with catalysts.

The Effect of Emission Trading System on Air Transport Industry and Airlines' Strategic Responses in Korea (온실가스 배출권거래제(ETS)가 국내 항공사에 미치는 영향 및 항공사들의 전략적 대응방안 연구)

  • Yoon, Han-Young;Lim, Jong-Bin;Park, Kang-Sung;Park, Wan-Kyu;Park, Sung-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.576-586
    • /
    • 2019
  • Airlines need to reduce their greenhouse gas (GHG) emissions because of the Paris Climate Agreement and ICAO CORSIA. This examined the degree of the strategic responses to which the airlines have made and the problems in the emission trading system (ETS). According to the analysis, the total amount of emission all the airlines made in the last three years was 116% more than the emission allowance imposed by the central government resulting in 10.7 billion KRW additional emission expense. Airlines would also face an increased carbon cost due to the implementation of ICAO CORSIA by purchasing an additional paid-in emission allowance in international routes. Although it is effective to retire the old aircraft early and induce the brand-new fuel-efficient aircraft to reduce GHG emissions, it is impractical in the short-term due to the tremendous amount of investment. To reduce the emission, airlines are washing engines, using ultra-light ULD and carts in the cabin, increasing the use of flaps and preventing the use of APU. On the other hand, these are very limited measures for reducing emissions according to the ICAO's mandatory emission target.

High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides (염화알칼리에 의한 과열기 소재의 고온부식 영향)

  • Kim, Beomjong;Jeong, Soohwa;Kim, Hyesoo;Ryu, Changkook;Lee, Uendo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2018
  • In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.

A Study on the Financial Structure Effect Factor and Business Analysis of Ocean Shipping Companies (국적외항선사의 경영실태분석과 재무구조 영향요인에 관한 실증연구)

  • Lee, Sung-Yhun;Kim, Young-Dae;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.264-272
    • /
    • 2019
  • In this study, the rate of return on investment used as a proxy variable for the entity's value and financial structure (liability ratio) is related to positive balance. This is consistent with the Static Tradeoff Theory (STT) that the entity's value and financial structure are related to a positive balance because the capital expense of a debt (tax-saving effects) that is less than its equity cost before it is in financial difficulty. Also, operating profitability (EBITDA/Sales), investment safety, total asset growth, net working capital and depreciation expenses are related to negative (-) with financial structure (liability ratio). This is the result of an analysis consistent with the Pecking Order Theory (POT). Fuel costs, borrowing, total asset turnover, financial costs, and tangible asset ratios have a significant positive relationship with the debt ratio. This is consistent with the agency theory and confirms that excessive chartering expenses, such as the bankrupt H company, are the main factors that pressure the financial structure of Korean ocean carriers.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

An Analysis on the Effects of Energy Conservation Consciousness on Korean Energy Saving Behavior - Through Mediating by Energy-Relating Broadcasting Type - (한국인의 에너지 절약의식이 에너지 절약행동에 미치는 영향 분석 - 에너지관련 방송의 유형별 매개효과 -)

  • Park, Jung-Il;Park, Jung-Gu;Lee, Jung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.836-854
    • /
    • 2018
  • This study is analyzing the effects of energy conservation consciousness on Korean energy saving behavior through the mediating effects of energy-related broadcasting media, such as TV. The study is carried out through the survey with structured questionnaire for each factors, using a mediating analysis based on PROCESS Macro proposed by Hayes (2013). The results of the study have been found that people with higher energy conservation consciousness displayed energy saving behavior more frequently and more actively for energy saving behavior as they were more exposed to energy-related broadcasting media. By energy-related broadcasting media the effect of energy public service ad and campaign was the largest at 15.3%, followed by energy news at 12.1%. But energy documentary has no effect on energy saving behavior. Based on the results of this analysis, it is necessary to establish a broadcasting policy that enhances the frequency of energy-related broadcasting media and energy documentary that can induce energy saving behavior. It is also necessary to make efforts to increase the reliability of analysis through empirical data such as electricity bills and fuel cost which show the actual saving level by energy saving behavior.

A Methodology to Evaluate Economic Feasibility by Taking into Account Social Costs from Automobile Exhaust Gases (자동차 배기가스로 인한 사회적 비용을 고려한 경제성 평가 방법론)

  • Cho, A-Ra;Lim, Seong-Rin
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.263-272
    • /
    • 2019
  • Air pollutants have a high impact on everyday life as well as on human health; therefore, new technologies such as low-emission vehicles and add-on systems for air pollutant reduction are needed for our society. However, the environmental benefits and costs of those technologies are not taken into account in existing economic feasibility assessments, which is a barrier that needs to be overcome for green technology to achieve wide dissemination and fast penetration in the market. Thus, this study develops a methodology to assess the economic feasibility of an air pollutant reduction technology by taking into account the social costs from air pollutants and carries out a case study to validate the methodology. Because the social unit costs for air pollutants have not been evaluated yet in South Korea, the methodology uses the social unit costs evaluated for the European Union that are then converted to those for South Korea based on the measuring criteria for vehicle emission gases, parity purchasing price, foreign currency exchange rate, and customer price index. The social unit costs for South Korea are used to assess economic feasibility. A case study was performed to assess the economic feasibility of a dual fuel system using diesel and compressed natural gas by taking into account social costs from air pollutants as well as economic costs. This study could contribute to assessing the true economic feasibility of green technology, projects, and policy related with air pollutant reduction.

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.