• Title/Summary/Keyword: Fuel Consumption Rate

Search Result 389, Processing Time 0.023 seconds

Effect of Intake Flow Control Method on Part Load Performance in SI Engine(2) - EGR Characteristics and Comparison of Dilution Method (스파크점화기관에서 흡기제어 방식이 부분부하 성능에 미치는 영향(2) - EGR 특성과 희석 방법의 비교)

  • Kang, Min Gyun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-130
    • /
    • 2014
  • This paper is the second investigation on the effects of intake flow control methods on the part load performance in a spark ignition engine. In the previous work, two control methods, port throttling and masking, were compared with respect to lean misfire limit, fuel consumption and emissions. In this work, the effects of these two methods on EGR characteristics were studied and simultaneously the differences between EGR and lean combustion as a dilution method were investigated. The results show that EGR limit is expanded up to 23% and 3 ~ 5% improvement in the fuel consumption are achieved around 8 ~ 13% rates by the flow controls comparing with 10% limit and 1.5% reduction around 3% rate of non-control case. The masking method is more effective on the limit expansion than throttling as like as lean misfire limit; however there is no substantial difference in fuel consumptions improvement regardless the control methods except high load condition. Also it is observed that there exist critical EGR rates around which the combustion performance and NOx formation change remarkably and these rates generally coincide with optimum rates for the fuel consumption. In addition, dilution with fresh air is much more advantageous than that of the exhaust gas from the view point of dilution limit and fuel consumption, while utilization of the exhaust gas is more effective on NOx reduction in spite of considerably small dilution compared with the use of fresh air. Finally, the improvement of fuel consumption by massive EGR is highly dependent on the EGR limit at which the engine runs stably, therefore the stratified combustion technique might be a best solution for this purpose.

A Study on the Development of the Vehicle Powertrain Model (차량의 동력전달장치 모델 개발에 관한 연구)

  • Kim, Kwangsuk
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2011
  • To estimate fuel consumption of a vehicle, a car can be tested on chassis dynamometer. In this case, test causes a lot of time and money. To predict the fuel efficiency of vehicles in the design stage or early stage of development, the development of computer simulation model is necessary. Using simulation to predict the fuel consumption, the driving model which consists of time-velocity profile and time-grade profile is necessary In this study, vehicle model is developed in MatLab/simulink to estimate real driving fuel consumption rate with time-velocity profile, time-shift gear profile and time-grade profile. Vehicle model consists of driver model, engine model, power train model, and so on. On-road vehicle tests to verify the vehicle model are carried out for analyzing the result of simulation and comparing with those of the experiments.

An experimental study on characteristics of exhaust emissions with fuel properties changes in a diesel engine for small-sized fishing vessel (소형 어선용 디젤기관에서의 연료유 성상에 따른 배기배출물 특성에 관한 연구)

  • Suh, Jung-Ju;Wang, Woo-Kyung;Kim, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.487-494
    • /
    • 2010
  • In order to test the applicability of bunker-A in a diesel engine for small-fishing boat, the investigation of the engine performance and the exhaust emission was performed under various conditions of fuel property, intake air pressure and fuel temperature. It was also performed based on IMO NOx Technical code. At high load, the energy consumption rate of bunker-A was lower than that of diesel oil, and the characteristics of exhaust emission of bunker-A were similar to those, and NOx emission rates of both fuels satisfied the IMO NOx emission regulation limits. The energy consumption rate and characteristics of exhaust emission were improved as the intake air pressure was increased, but these were not improved remarkably as the temperature of bunker-A was heated. However, at low load the energy consumption rate, CO emission rate and HC emission rate of bunker-A were higher than those of diesel oil, but NOx emission rates of the fuels were about the same. In addition, at low load the energy consumption rate and CO emission rate of bunker-A were increased as the intake air pressure and the temperature were higher than normal conditions. Accordingly, it is thought that the use of bunker-A in a kind of test engine is possible at high load. On the other hand, it is thought that more research is needed to improve the combustion efficiency under low temperature and low load condition.

A Study on the Adoption of Power Take Off Operation Mode and Fuel-Saving Effect in the Hybrid Electric Propulsion System for a Warship (전투함 하이브리드 전기추진 시스템의 PTO 운전모드 적용 및 연료절감 효과 연구)

  • Kim, So-Yeon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2019
  • Hybrid electric propulsion systems (H-EPSs) are an intermediate step for integrated full electric propulsion warships. H-EPSs are a dynamic combination of mechanical and electrical propulsion systems to achieve the required mission performances. The system modes could adapt to meet the requirement of the various operation conditions of a warship. This paper presents a configuration and operating modes of H-EPSs considering the operation conditions of a destroyer class warship. The system has three propulsion modes, namely, motoring mode, generating mode [power take off (PTO) mode], and mechanical mode. The PTO mode requires a careful fuel efficiency analysis because the fuel consumption rate of propulsion engines may be low compared with the generator's engines depending on the loading power. Therefore, the calculation of fuel consumption according to the operating modes is performed in this study. Although the economics of the PTO mode depends on system cases, it has an advantage in that it ensures the reliability of electric power in case of blackout or minimum generator operation.

Flame Formation of Ultrasonically-atomized Liquid-fuel Injected through a Slit-jet Nozzle (Slit-jet 노즐을 통해 분사되는 초음파 무화 액체연료 화염의 형성)

  • Kim, Min Sung;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • An experimental study was performed for the combustion-field visualization of the burner which burns the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configurations of the flame and temperature gradient were caught by both high-speed camera and thermo-graphic camera, and those images were analyzed in detail through a post-processing. In addition, the fuel consumption was measured using the balance during the combustion reaction. As a result, the consumption of atomized fuel increased with the increasing flow-rate of carrier-gas, but any correlation between the air/fuel ratio and carrier-gas flow-rate was not found at the low flow-rate condition. Also, the combustion-field grew and reaction-temperature rose due to the strengthening of combustion reaction with the increasing flow-rate of carrier-gas and power consumption of ultrasonic oscillator.

Fuel Economy Comparison according to Driving Mode Conditions of the Internal Combustion Engine Vehicles (내연기관 자동차의 주행모드 조건에 따른 연비 성능 비교)

  • Choi, Yongjun;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • The purpose of this paper is to determine the fuel change and weight change impact on the fuel economy and emission characteristic of ICE (Internal Combustion Engine) vehicle. According to fuel type, fuel consumption and emission characteristics were measured and fuel used in this paper was gasoline, diesel, and LPG. Four vehicles with different weight were tested and the fuel economy were compared and analyzed by using scatter graph. Test was carried out using chassis dynamometer, CVS (Constant Volume Sampler), and emission measurement system. Diesel vehicle less emited $CO_2$ compared to gasoline and LPG. Even if same $CO_2$ between gasoline and LPG, there are difference fuel economy depending on carbon proportion of specific fuel. The heavier weight of vehicle, the worse of fuel economy and Better fuel economy performance on highway driving mode.

  • PDF

The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions In a Gasoline Engine

  • Jinyoung Cha;Junhong Kwon;Youngjin Cho;Park, Simsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1442-1450
    • /
    • 2001
  • The EGR system has been widely used to reduce nitrogen oxides (NO$\_$x/) emission, to improve fuel economy and suppress knock by using the characteristics of charge dilution. However, as the EGR rate at a given engine operating condition increases, the combustion instability increases. The combustion instability increases cyclic variations resulting in the deterioration of engine performance and emissions. Therefore, the optimum EGR rate should be carefully determined in order to obtain the better engine performance and emissions. An experimental study has been performed to investigate the effects of EGR on combustion stability, engine performance,70x and the other exhaust emissions from 1.5 liter gasoline engine. Operating conditions are selected from the test result of the high speed and high acceleration region of SFTP mode which generates more NO$\_$x/ and needs higher engine speed compared to FTP-75 (Federal Test Procedure) mode. Engine power, fuel consumption and exhaust emissions are measured with various EGR rate. Combustion stability is analyzed by examining the variation of indicated mean effective pressure (COV$\_$imep/) and the timings of maximum pressure (P$\_$max/) location using pressure sensor. Engine performance is analyzed by investigating engine power and maximum cylinder pressure and brake specific fuel consumption (BSFC)

  • PDF

The Effect of Ethanol Mixing Rate on Engine Performance (에탄올 혼합율이 엔진성능에 미치는 영향)

  • Park, Kweon-Ha;Park, Hong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.663-669
    • /
    • 2008
  • A rapid growth of automobile industry has become a major cause for the environmental pollution of big cities, which has driven the emission regulation into extreme. The study of alternative fuel is one of the many researches for improving car emissions. In this study, the effect of an ethanol mixing rate on the engine performance of exhaust emissions, fuel consumption and a maximum torque is assessed for a gasoline engine without any retrofit. The result shows that maximum torque is not reduced in the range of ethanol mixing rate of 10 to 15%. CO and NOx is reduced with the increase of ethanol mixing rate and the fuel consumption remains in similar level.

Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle (하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.

Study on the LP Gas as a Fuel for Farm Kerosene Engine (농용 석유기관의 LPG 이용에 관한 연구)

  • 조기현;이승규;김성태;김영복
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.189-198
    • /
    • 1997
  • In order to find out the potential of LP gas as a substitute fuel for small fm engine, experiments were carried out with a four-stroke spark-ignition engine which was modified from a kerosene engine mounted on the power tiller. Performance characteristics of kerosene and LP gas engine such as torque, volumetric efficiency fuel consumption rate, brake thermal efficiency, exhaust temperature, and carbon monoxide and hydrocarbon emissions were measured and analyzed under various levels of engine speed and compression ratio. The results were summarized as follows. 1. It showed that forque of LPG engine was 41% lower than that of kerosene engine with the same compression ratio, but LPG engine with compression ratio of 8.5 it was showed similar torque level to kerosene engine with compression ratio of 4.5. 2. Fuel consumption of LPG engine was reduced by about 5.1% and thermal efficiency was improved by about 2% compared with kerosene engine with the same compression ratio. With the incrasing of compression ratio in LPG engine fuel consumption rate decreased and thermal efficiency increased. 3. Exhaust temperature of LPG engine was about 15% lower than that of kerosene engine. Concenrations of emissions from LPG engine was affected insignificantly by compression ratios, and carbon monoxide emissions from the LPG engine was not affected by engine speed so much. The carbon monoxide and hydrocarbon emissions from LPG engine were about 94% and 66% lower than those of kerosene engine, respectively.

  • PDF