• Title/Summary/Keyword: Fuel Consumption

Search Result 1,634, Processing Time 0.033 seconds

A study on performance comparison of jacket cooling fresh water system for marine diesel engine (선박용 디젤기관의 재킷 냉각청수시스템 성능 비교에 관한 연구)

  • Kim, Duk-Kyung;Lee, Jae-Hyun;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.8-14
    • /
    • 2017
  • Due to the financial crisis in 2008, the world economy collapsed leading to an increase in oil prices and a decrease in freight by shipping. To overcome this crisis, major shipping companies ordered larger ships, changed their trading route and improved operating of ships to overcome deficits. In particular, low-speed navigation was much favored by many companies so that it can reduce fuel consumption. However, the long-term operation of high-speed optimized engines in low-speeds has affected the jacket cooling fresh water (J.C.F.W.) system as they fail to maintain the normal operational temperature. The temperature of J.C.F.W. system dropped leading to low temperature corrosion. As a result, when the engine is operating at minimal load the functioning of existing J.C.F.W cooler is decreased and the use of fresh water generator is substantially limited. Therefore, an improvement in the functioning of J.C.F.W. system is necessary. In this paper, in order to review the improvements required for the operation of J.C.F.W. of low-speed operating marine diesel, an experiment was conducted by comparing and analyzing the results of the main engine J.C.F.W. system of a Panamax class bulk carrier 82k and a Cape class bulk carrier 180k by installing and uninstalling the J.C.F.W. Cooler. Thus, this paper proposed an improved design of the J.C.F.W. system that is suitable for the present low-speed operation.

Operational Characteristics of a Dry Electrostatic Precipitator for Removal of Particles from Oxy Fuel Combustion (순산소 연소 배출 입자 제거용 건식 전기집진장치 운전 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Oh, Won-Seok;Hwang, Gyu-Dong;Kim, Yong-Jin;Hong, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • In a test duct with closed configuration, particle removal performance of an edge-plate type electrostatic precipitator (ESP) was evaluated at a high flow rate in $CO_2$ rich environments by changing gap distances between collection plates, concentrations of $CO_2$, particle sizes, types of electrodes, and types of power supplies. At the same experimental conditions, collection efficiency of particles with the mean particle size, 300 nm, decreased as the gap distance and $CO_2$ concentration increased because of low electrostatic force and low discharged current. In addition, as the particle size increased, the efficiency increased because of high charging rate of the large particles. With the electrode type which has higher surface area of a discharging plate and with the power supply which applied 25 kHz-pulsed DC voltages, the removal efficiency was high even in rich $CO_2$ condition due to high electrostatic force at the same power consumption.

Urinary PAH Metabolites as Biomarkers of Environmental PAHs Exposure (환경성 PAHs 노출과 생체지표 연구)

  • Lee, Kyoung-Ho;Li, Zhung-Min;Cho, Soo-Hun;Kwon, Ho-Jang;Kang, Dae-Hee
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • The aim of the study was to see if there is any differences in urinary 1-hydroxypyrene glucuronide (1-OHPG) and 2-naphthol levels in children ($8{\sim}14$ years old) and their mothers ($30{\sim}46$ years old) living three cities in South Korea (Seoul, Incheon and Pohang) and three in China (Changchun, Datong and Kunming), where the levels of air pollution varies. The factors related with urinary biomarkers levels were also evaluated. The study subjects consisted of 118 Korean (60 children and 58 their mothers) and 120 Chinese (60 children and 60 their mothers). Urinary 1-OHPG was measured by synchronous fluorescence spectroscopy after immuno-affinity purification using monoclonal antibody 8E11 and urinary 2-naphthol concentrations were determined by HPLC with fluorescence detector. Information on recent consumption of diet containing high PAHs, environmental tobacco smoke (ETS), type of cooking and heating fuels, and other life-style characteristics were collected by self-administered questionnaire. The arithmetic mean of urinary 1-OHPG levels (n = 120, $mean{\pm}SD$, $6.77{\pm}7.96{\mu}mol/mol$ creatinine) in Chinese were 10 fold higher than those in Korean (n = 118, $0.62{\pm}0.61{\mu}mol/mol$ creatinine) (P < 0.01). Urinary 2-naphthol levels in Chinese (n = 119, $59.50{\pm}82.29{\mu}g/g$ creatinine) were significantly higher than those in Korean (n = 117, $25.09{\pm}46.56{\mu}g/g$ creatinine) (P < 0.01). Urinary 1-OHPG and 2-naphthol levels were significantly higher in children living the polluted cities in China (Datong and Chanchun, respectively). Multiple linear regression analysis indicated that living in factory area (vs. residential area) and use of coal stove as heating fuel were significant predictors for urinary 1-OHPG (overall model $R^2$= 0.46, n = 204). And ETS was predictor for urinary 2-naphthol levels in Korean ($R^2$ = 0.36, n = 46). These results indicated that urinary 1-OHPG and 2-naphthol levels were related with different ambient particulate air pollution, type of heating fuels and ETS.

A Study on the Greenhouse Gas emission from Ships in Korea (선박부문 온실가스 배출량 산정에 관한 연구)

  • Choe, Sang-Jin;Park, Seong-Gyu;Jang, Yeong-Gi;Lee, Hui-Gwan;Hwang, Ui-Hyeon;Bong, Chun-Geun
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • Recently, the reduction of greenhouse gases(GHG) for climate change is the most important international issue. In order to control efficiency GHG emission rate reduction, it is essential to establish GHG emission inventory preferentially. The emission of ships that are emitting its $CO_2$ in international waters is becoming chief among the issues which country is put under an obligation. In the IMO reports, shipping is estimate to emit 1,046million tonnes of $CO_2$, which corresponds to 3.3% of global emission during 2007. International shipping is estimated to have emitted 870 million tonnes, about 2.7% of global emission of $CO_2$ in 2007. In this study, the general information of GHG emission, based on fuel consumption statistic, Tier 1, and the emission inventory is calculated to break down in to domestic and international emission. The GHG emission from ships in Korea was total 31,646 Gg $CO_2$-eq in 2009, which is included fishing, Korea flag coastal ship, Korea flag ocean going ship and foreign flag ships. And domestic emission and international emission was 5,398Gg $CO_2$-eq, 7,630Gg $CO_2$-eq and foreign flag ship was 18,618Gg $CO_2$-eq respectively.

Turbine Efficiency Analysis of Steady Flow in a Twin Scroll Turbocharger (트윈 스크롤 터보과급기에서 정상유동의 터빈 효율 분석)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.765-770
    • /
    • 2020
  • The turbochargers used widely in diesel and gasoline engines are effective devices to reduce fuel consumption and emissions. In this study, the isentropic turbine efficiency of the steady flow in a twin-scroll turbocharger for the passenger vehicle gasoline engine was analyzed. The cold gas test bench was designed and made. The pressure and temperature of the inlet and exit of the turbine were measured at 60,000, 70,000, 90,000, and 100,000rpm under the steady-state flow. The isentropic turbine efficiency was calculated. The efficiency was the range of 0.53 to 0.57. The BSR and expansion ratio were changed from 0.71 to 0.84 and from 1.24 to 1.72, respectively. The isentropic turbine efficiency decreased with increasing BSR and expansion ratio. The operation of only scroll A or B was compared with that of the twin-scroll turbine. The isentropic efficiency of using only scroll B was higher than those of only scroll A at 60,000rpm. The isentropic efficiency of using only scroll A was higher than those of only scroll B at 100,000rpm. Therefore, the twin-scroll turbine used in this study is operating effectively in the wide speed range.

Comparison of Combustion Characteristics On the Basis of the Dilution Ratio in Diesel Engines with LPL EGR (저압 EGR을 적용한 디젤엔진의 희석비에 따른 연소 특성 비교)

  • Lim, Gi-Hun;Park, Jun-Hyuk;Choi, Young;Lee, Sun-Youp;Kim, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Exhaust gas recirculation (EGR) is more effective than selective catalytic reduction (SCR) or lean $NO_x$ trap (LNT) for the reduction of $NO_x$ emissions in diesel engines. A large amount of EGR gas is necessary to satisfy the stringent regulations on $NO_x$ emissions. Low pressure loop (LPL) EGR is almost independent of the variable geometry turbocharger (VGT) at a specific boost pressure, so LPL EGR is better than conventional high pressure loop (HPL) EGR in terms of EGR supply. We compare the influence of HPL EGR and LPL EGR on the combustion characteristics at a constant boost pressure in a diesel engine. The dilution ratio was employed as an independent parameter to analyze the effect of the dilution of the intake charge for each EGR loop. At the same level of $NO_x$ emissions, the fuel consumption and smoke opacity were slightly lower for LPL EGR than for HPL EGR.

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.

A Basic Study for the Application of the Shafting System for the Contra-Rotating Propeller (상반회전 프로펠러 축계 실용화를 위한 기초 연구)

  • Shin, Sang-Hoon;Lee, Seung-Min;Rim, Chae Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.391-398
    • /
    • 2020
  • If the lost energy produced by a propeller can be partially recovered, the propulsive efficiency can be increased, and the fuel consumption reduced. The devices installed for this purpose are called Energy Saving Devices, of which the Contra-Rotating Propeller system is one of the most effective devices. The first problem to be solved to install the Contra-Rotating Propeller system on a large ship is that the mean pressure generated in the journal bearing needs to meet the design criteria of the classifications. In Korea, however, the practical use is being delayed because it cannot overcome this step. The next step is to lower local pressure to increase the reliability. In this study, to solve the mean pressure problem as the first step of practical use, a product carrier with a short stern shape was selected to reduce the weight of the shafting system, and a suitable shafting-system design plan was proposed. Shaft analysis confirmed that the mean pressure of 0.8 MPa (8 bar), which is a design criterion of the classifications for a journal bearing lining material (white metal), was satisfied. In addition, the necessity of reducing the local pressure was also confirmed.

The Dynamic Optimal Fisheries Management for Spanish Mackerel (삼치어종의 동태적 최적어업관리)

  • Cho, Hoonseok;Nam, Jongoh
    • Environmental and Resource Economics Review
    • /
    • v.29 no.3
    • /
    • pp.363-388
    • /
    • 2020
  • The purposes of this study are to not only estimate optimal harvests and efforts using the surplus production methods for Spanish mackerel caught by multiple fishing gears, but provide dynamic optimal fisheries management for these gears using the current value Hamiltonian method. To achieve the above purposes this study uses several models such as Gavaris's general linear model for standardizing fishing efforts, surplus production method for estimating biological and technological coefficients, current value Hamiltonian method for estimating dynamic optimal harvest and efforts, and sensitivity analysis for diagnosing economic influences of these fisheries. As a result, this study showed that Spanish mackerel was overfished by multiple fishing gears based on surplus production method and the current value Hamiltonian method. Also, this study found that when the price and cost proportionally changed, the optimal harvest and fishing effort sensitively responded to the stock level of Spanish mackerel. Next, this study suggested that the multiple fishing gears for Spanish mackerel should reduce unnecessary costs such as operating time or inefficient fuel consumption. Finally, this study provided reasons Spanish mackerel should be included in the TAC system in a view of profit maximization based on sustainable use of the Spanish mackerel.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.