• Title/Summary/Keyword: Fuel Cell

Search Result 3,976, Processing Time 0.039 seconds

The development of mobile fuel cell (모바일용 연료전지 개발)

  • Lee K.I.;Park M.S.;Cho Y.H.;Cho Y.H.;Sung Y.E.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.549-550
    • /
    • 2006
  • Mobile fuel cell is highlighted in these days because mobile fuel cell can contain more energy than existing batteries. Nowadays mobile devices like cellular phone, PMP(portable multi-media player), notebook, and etc. need more energy, But existing batteries like Li-ion or Ni-MH batteries are not going to satisfy such demands. In this paper, mobile fuel cell is developed. Its size is 50*70*8mm and it is made of aluminium plates. The fuel cell type is PEM and the fuel is pure hydrogen and oxygen.

  • PDF

A Feasibility Study of Low-Cost Hybrid Fuel-Cell System for Ship Auxiliary Power (선박 보조전원을 위한 저가형 하이브리드 연료전지 시스템 적용 타당성 연구)

  • Yang, Geun Ryoung;An, Sang Yong;Choo, Jin Hoon
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.3-12
    • /
    • 2013
  • This paper proposes the hybrid fuel cell system that can solve disadvantages of existing fuel cell system and ensure high reliability and high stability. The system consists of PEM fuel cell, Ni-MH battery and power management system. In this system, when the power provided from the fuel cell is higher than the load power, the extra energy may be used to charge the Ni-MH battery. When the fuel cell can not provide enough energy to the load, the shortage of energy will be supplied by the Ni-MH battery. Experimental results show that the output voltage is regulated well during load variations. Also, high system efficiency is achieved.

A Study on the 3kW Fuel Cell Generation System (3kW급 연료전지 발전시스템에 관한 연구)

  • Jeong, Dong-Hyo;Park, Jae-Se
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.75-78
    • /
    • 2005
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400V dc for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Simulation result is used to support the analysis.

  • PDF

Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter (디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발)

  • Ju, Young-Ah;Cha, Min-Young;Han, Byung-Moon;Kang, Tae-Sub;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.

Demonstration Results of Fuel Cell Buses of Hyundai Motor Company (현대자동차 연료전지버스 실증 운영 결과)

  • Park, Jeongkyu;Lee, Seungyoon;Kim, Donghoon;Jin, Youngpin;Park, Jongjin;Kim, Saehoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.264-270
    • /
    • 2014
  • Fuel cell technology is the most representative area of alternative energy field on vehicle industry according to the limitation of petroleum resources. In recent years, the technology of fuel cell vehicles has made rapid progress, Hyundai Motor Company (HMC) reached to mass production of the Tucson ix hydrogen fuel cell vehicles first in the world. In addition, HMC is accelerating the development of hydrogen fuel cell buses, which have a number of advantages for hydrogen infrastructure and mass transport personnel. In this study, we examined potential of the commercialization through the demonstration of hydrogen fuel cell buses. As a result, we identified that the mass-production possibility of FCB has high potential and HMC's technology will lead to fuel cell bus industry.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Power Management of Fuel Cell Propulsion System for Unmanned Aerial Vehicles (무인기용 연료전지 추진 시스템의 동력 관리)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.13-16
    • /
    • 2007
  • Fuel cell was used as a propulsion system for unmanned aerial vehicles (UAV) in the present study. Fuel cell propulsion system are an ideal alternative power source with high energy density for high-endurance UAV. Fuel cell power system provides UAV up to five times the energy densiη of existing batteries. Sodium borohydride, stored in liquid state, was selected as a hydrogen source. Hydrogen generation system consists of catalytic reactor, pump, fuel cartridge, and separator. Hybrid power management system (PMS) between fuel cell and lithium-polymer ba야ery was developed. Motor, pump, and fans, operated on battery power controlled by feedback signals of fuel cell system. Battery was recharged by surpuls powr of fuel cell.

  • PDF

Experimental Analysis for Optimization of PEM Fuel Cell Dead-end Operation (고분자전해질 연료전지 Dead-end 운전 최적화에 대한 실험적인 연구)

  • Lee, Bonggu;Sohn, Young-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.136-147
    • /
    • 2015
  • Dead-ended operation of Proton Exchange Membrane Fuel Cell(PEMFC) provides the simplification of fuel cell systems to reduce fuel consumption and weight of fuel cell. However, the water accumulation within the channel prohibits a uniform supply of fuel. Optimization of the purge strategy is required to increase the fuel cell efficiency since fuel and water are removed during the purge process. In this study, we investigated the average voltage output which depends on two interrelated conditions, namely, the supply gas pressure, purging valve open time. In addition, flow visualization was performed to better understand the water build-up on the anode side and cathode side of PEMFC in terms of a variety of the current density. We analyzed the correlation between the purge condition and water flooding.

Fabrication and Performance Evaluation of Tubular Solid Oxide Fuel Cells Stack (원통형 고체산화물 연료전지 스택 제작 및 성능평가)

  • Kim, Wanje;Lee, Seungbok;Song, Rakhyun;Park, Seokjoo;Lim, Takhyoung;Lee, Jongwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.467-471
    • /
    • 2013
  • In present work, optimized the manufacturing process of anode-supported tubular SOFCs cell and stack were studied. For this purpose, we first developed a high performance tubular SOFC cell, and then made electrical connection in series to get high voltage. The gas sealing was established by attaching single cells to alumina jig with ceramic bond. Through these process, we can obtain such high OVP as around 15V, which means that the electrical connection and gas sealing were optimized. Finally we developed a new tubular SOFC stack which shows a maximum power of 65W @ $800^{\circ}C$.