• Title/Summary/Keyword: Fruiting body development

Search Result 121, Processing Time 0.02 seconds

Operon Required for Fruiting Body Development in Myxococcus xanthus

  • Kim, Do-Hee;Chung, Jin-Woo;Hyun, Hye-Sook;Lee, Cha-Yul;Lee, Kyoung;Cho, Kyung-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1288-1294
    • /
    • 2009
  • We have used mutational analysis to identity four genes, MXAN3553, MXAN3554, MXAN3555, and MXAN3556, constituting an operon that is essential for normal fruiting body development in Myxococcus xanthus. Deletion of MXAN3553, which encoded a hypothetical protein, resulted in delayed fruiting body development. MXAN3554 was predicted to encode a metallopeptidase, and its deletion caused fruiting body formation to fail. Inactivation of MXAN3555, which encoded a putative NtrC-type response regulator, resulted in delayed aggregation and a severe reduction in sporulation. Fruiting bodies also failed to develop with the deletion of MXAN3556, another gene encoding a hypothetical protein.

Development of Ganoderma lucidum on Soft and Hard Wood Logs and Determination of Organic Germanium and Ganoderic Acid Content of the Fruiting Body Produced (침엽수와 활엽수 골목에서 Ganoderma lucidum의 발생과 자실체의 Organic Germanium과 Ganoderic Acid 함량)

  • Sukarno, Nampiah;Aini, Al-Azhariati;Sumarna, Vivi;Rohaeti, Eti;Darusman, Latifah K.
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2004
  • The objectives of this experiment were to study the growth and development of fruiting body of the two Ganoderma lucidum isolates on log of the soft wood Paraserianthes falcataria and the hard wood Shorea sp., and determination of organic germanium and crude ganoderic acid content of the fruiting body produced. The two Ganoderma lucidum isolates used were one Indonesian native (Indonesia isolate) and another isolate was purchased from Fungi Perfecti, USA (commercial isolate). The development and quality of the primordium and fruiting body of the mushroom, in general, were influenced by the isolates used. The types of wood, however, had no effect on the quality of the primordium and fruiting body produced. The Indonesian isolate produced better fruiting body compared to that of the commercial isolate. The development of fruiting body from primordium, however, was low for the two isolates tested. In general, only about one third of the primordium developed further into mature fruiting bodies, except for the commercial isolate grown on the soft wood medium in which more than 60% of the primordium developed into mature fruiting body. Apart from producing normal fruiting body, the commercial isolate also produced an abnormal one, which had a white mature pileus, whereas the normal one was brownish red. The organic germanium concentration of the fruiting body produced on the hard wood, in general, was higher than that of grown on the soft wood. The fruiting body from commercial isolate had higher organic germanium concentration compared to that of Indonesian isolate in both wood types. The two isolates used, however, had almost the same value of the crude ganoderic acid concentration in both types of wood tested. The Indonesian isolate had higher total yield of both organic germanium and crude ganoderic acid of the fruiting body produced compared to that of the commercial isolate.

  • PDF

Isolation of Genes Specifically Expressed in Different Developmental Stages of Pleurotus ostreatus Using Macroarray Analysis

  • Lee, Seung-Ho;Joh, Joong-Ho;Lee, Jin-Sung;Lim, Jong-Hyun;Kim, Kyung-Yun;Yoo, Young-Bok;Lee, Chang-Soo;Kim, Beom-Gi
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.230-237
    • /
    • 2009
  • The oyster mushroom (Pleurotus ostreatus) is one of the most important edible mushrooms worldwide. The mechanism of P. ostreatus fruiting body development has been of interest both for the basic understanding of the phenotypic change of the mycelium-fruiting body and to improve breeding of the mushrooms. Based on our previous publication of P. ostreatus expressed sequence tag database, 1,528 unigene clones were used in macroarray analysis of mycelium, fruiting body and basidiospore developmental stages of P. ostreatus. Gene expression profile databases generated by evaluating expression levels showed that 33, 10, and 94 genes were abundantly expressed in mycelium, fruiting body and basidiospore developmental stages, respectively. Among them, the genes specifically expressed in the fruiting body stage were further analyzed by reverse transcription-polymerase chain reaction and Northern blot to investigate temporal and spatial expression patterns. These results provide useful information for future studies of edible mushroom development.

Spore Dispersion of Tricholoma matsutake at a Pinus densiflora Stand in Korea

  • Park, Hyun;Ka, Kang-Hyeon
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.203-205
    • /
    • 2010
  • The spore of Tricholoma matsutake is considered to be the starting point of the mushroom growth cycle, but the mechanism of mycelial development from the spore stage is not yet clarified. In this study, we tried to measure how far the spores of T. matsutake disperse from a fruiting body located at a Pinus densiflora stand in Korea. We established 16 slide glasses coated with glycerin near a fruiting body in four directions separated by four different distance intervals within a mushroom productive stand after removing all other fruiting bodies from three plots. The number of dispersed spores increased with time from the first day (475 $spores/cm^2$) to the fourth day (836 $spores/cm^2$) after the pileus opened. The number of spores dispersed downward was about 1.5 times greater than that dispersed toward the ride. The number of dispersed spores decreased exponentially as the distance from each fruiting body increased. More than 95% of the spores dropped within a meter from the fruiting body, with 75% dropping within 0.5 m. Even so, the number of spores dispersed over 5 m from the fruiting body was more than 50 million when considering the total number of spores produced by a fruiting body is about 5 billion.

Fruiting Body Formation of Cordyceps militaris from Multi-Ascospore Isolates and Their Single Ascospore Progeny Strains

  • Shrestha, Bhushan;Han, Sang-Kuk;Sung, Jae-Mo;Sung, Gi-Ho
    • Mycobiology
    • /
    • v.40 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • Interest in commercial cultivation and product development of Cordyceps species has shown a recent increase. Due to its biochemical and pharmacological effects, Cordyceps militaris, commonly known as orange caterpillar fungus, is being investigated with great interest. Cultivation of C. militaris has been practiced on a large scale in order to fulfill a demand for scientific investigation and product development. Isolates of C. militaris can be easily established from both spores and tissue. For isolation of spores, ascospores released from mature stromata are trapped in sterile medium. Multi-ascospore isolates, as well as combinations of single ascospore strains, are used for production of fruiting bodies. Progeny ascospore strains can be isolated from artificial fruiting bodies, thus, the cycle of fruiting body production can be continued for a long period of time. In this study, we examined fruiting body production from multi-ascospore isolates and their progeny strains for three generations. $F_1$ progeny strains generally produced a larger number of fruiting bodies, compared with their mother multi-ascospore isolates; however, $F_2$ and $F_3$ progeny strains produced fewer fruiting bodies. Optimum preservation conditions could help to increase the vitality of the progeny strains. In order to retain the fruiting ability of the strains, further testing of various methods of preservation and different methods for isolation should be performed.

Development of a Molecular Marker for Fruiting Body Pattern in Auricularia auricula-judae

  • Yao, Fang-Jie;Lu, Li-Xin;Wang, Peng;Fang, Ming;Zhang, You-Min;Chen, Ying;Zhang, Wei-Tong;Kong, Xiang-Hui;Lu, Jia;Honda, Yoichi
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.72-78
    • /
    • 2018
  • The fruiting body pattern is an important agronomic trait of the edible fungus Auricularia auricula-judae, and an important breeding target. There are two types of fruiting body pattern: the cluster type and the chrysanthemum type. We identified the fruiting body pattern of 26 test strains, and then constructed two different near-isogenic pools. Then, we developed sequence characterized amplified region (SCAR) molecular markers associated with the fruiting body pattern based on sequence-related amplified polymorphism (SRAP) markers. Ten different bands (189-522 bp) were amplified using 153 pairs of SRAP primers. The SCAR marker "SCL-18" consisted of a single 522-bp band amplified from the cluster-type strains, but not the chrysanthemum strains. This SCAR marker was closely associated with the cluster-type fruiting body trait of A. auricula-judae. These results lay the foundation for further research to locate and clone genes controlling the fruiting body pattern of A. auricula-judae.

Formulation of a medium for the fruiting body development of Myxococcus stipitatus (Myxococcus stipitatus의 자실체 형성을 위한 배지 조성)

  • Hyun, Hyesook;Choi, Juo;An, Dongju;Cho, Kyungyun
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.117-122
    • /
    • 2019
  • Myxococcus stipitatus, a myxobacterium, forms spherical fruiting bodies with stems on edaphic substrates in enrichment cultures for isolation. However, an agar medium on which purely isolated strains of M. stipitatus form this type of fruiting bodies has not been known until now. In this study, since M. stipitatus DSM 14675 forms a hemispherical fruiting body-like structure on CYS agar medium, the effects of CYS medium components on fruiting body formation were investigated. Based on the results obtained, an agar medium on which M. stipitatus forms spherical fruiting bodies with stems was developed. Additionally, a liquid medium in which M. stipitatus grows in a dispersed manner was also formulated in this investigation.

Heterothallic Type of Mating System for Cordyceps cardinalis

  • Sung, Gi-Ho;Shrestha, Bhushan;Han, Sang-Kuk;Kim, Soo-Young;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.282-285
    • /
    • 2010
  • Cordyceps cardinalis successfully produced its fruiting bodies from multi-ascospore isolates. However, subcultures of multiascospore isolates could not produce fruiting bodies after few generations. Fruiting body production also differed from sector to sector of the same isolate. Single ascospore isolates were then co-inoculated in combinations of two to observe the fruiting characteristics. Combinations of certain isolates produced perithecial stromata formation, whereas other combinations did not produce any fruiting bodies. These results show that C. cardinalis is a heterothallic fungus, requiring two isolates of opposite mating types for fruiting body production. It was also shown that single ascospore isolates are hermaphrodites.

Screening of Fruiting Body Formation-Specific Genes from the Medicinal Mushroom Cordyceps militaris MET7903 (약용버섯번데기 동충하초 MET7903의 특이적 자실체형성 유전자의 선별)

  • Yun, Bangung;Chung, Ki-Chul
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.145-148
    • /
    • 2004
  • This study was carried out to screen the fruiting body formation-specific genes from the medicinal mushroom Cordyceps militaris. A cDNA synthesized using total RNA from 4 stages of mushroom development, mycelium, primordium, immature fruiting body and mature fruiting body. Differential expression gene screening was performed by DD-PCR(Differential Display Arbitrary Primer PCR) with cDNA, we sequenced partial 6 genes using pGEM cloning vector. The DNA Sequence of the six DD-PCR products derived from differentially expressed genes was compared to that in the GenBank database by using the NCBI BLAST search to identify similarities to known sequences. Sequence analysis showed that six of DD-PCR products have unknown sequence.

  • PDF

Development of a Quantitative Induction Method for Chondromyces crocatus Fruiting Body Formation (Chondromyces crocatus 자실체 형성의 정량적 유도 방법 개발)

  • Lee, Chayul;Shin, Hyejin;Cho, Kungyun
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.173-178
    • /
    • 2014
  • We have developed a method for the preparation of dispersed cell suspensions of Chondromyces crocatus, which is essential for quantitative studies of fruiting body formation. Cells of C. crocatus have a tendency to aggregate in liquid, hindering quantitative studies. However, cells grown on casitone-yeast extract agar plates, containing 3% agar, allowed the preparation of well-dispersed cell suspensions. Cell suspensions at a concentration of $2{\times}10^8cells/ml$, obtained by using this method, developed typical C. crocatus fruiting bodies when placed as $20{\mu}l$ spots on agar plates with no nutrient supplementation. The addition of nutrients such as casitone altered or inhibited fruiting body formation. Fruiting body branch formation increased with increasing agar content. Under optimum conditions, the formation of fruiting body structure in C. crocatus KYC2823 was completed within 24 h.