• Title/Summary/Keyword: Fructose and glucose

Search Result 1,339, Processing Time 0.029 seconds

Physicochemical and Sensory Characteristics of Kakdugi Added with Xanthan Gum during Fermentation (Xanthan Gum첨가 깍두기의 이화학적.관능적 특성)

  • 김혜영;김미리
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.196-203
    • /
    • 2002
  • Effect of different levels (0 ,0.05, 0.15, 0.25%) of xanthan gum on kakdugi fermentation was investigated by analyzing physicochemical and sensory characteristics during fermentation at 2$0^{\circ}C$. During fermentation, pH was maintained higher, and total acidity and number of lactic acid bacteria, maintained lower in xanthan gum groups, especially in 0.05% addition group than control. Free sugar amount were higher in xanthan gun groups than control, and glucose and fructose which were the major free sugars, decreased rapidly during fermentation, whereas mannitol increased in all samples, especially in xanthan gum groups. Liquid content of kakdugi was smaller in 0.05% xanthan gum group than control. Viscosity of kakdugi liquid decreased rapidly whereas initial viscosity was maintained in xanthan gum groups. Hardness decreased during fermentation, but at the 7th day of fermentation was higher in 0.05% xanthan gum group than control. The result of sensory evaluation shows that there were no significant difference in sour odor, moldy, sour taste and savory taste among samples. Starch taste was higher in 0.15% or 0.25% xanthan gum, but there is no difference in 0.05% group, compared to control. Overall preference until the 5th day of fermentation, xanthan gum group was not significantly different from that of control but at the 7th day of fermentation, 0.05% addition group was significantly higher than control.

Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition

  • Lee, Sang Myung;Bae, Bong-Seok;Park, Hee-Weon;Ahn, Nam-Geun;Cho, Byung-Gu;Cho, Yong-Lae;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.384-391
    • /
    • 2015
  • It has been reported that Korean Red Ginseng has been manufactured for 1,123 y as described in the GoRyeoDoGyeong record. The Korean Red Ginseng manufactured by the traditional preparation method has its own chemical component characteristics. The ginsenoside content of the red ginseng is shown as Rg1: 3.3 mg/g, Re: 2.0 mg/g, Rb1: 5.8 mg/g, Rc:1.7 mg/g, Rb2: 2.3 mg/g, and Rd: 0.4 mg/g, respectively. It is known that Korean ginseng generally consists of the main root and the lateral or fine roots at a ratio of about 75:25. Therefore, the red ginseng extract is prepared by using this same ratio of the main root and lateral or fine roots and processed by the historical traditional medicine prescription. The red ginseng extract is prepared through a water extraction ($90^{\circ}C$ for 14-16 h) and concentration process (until its final concentration is 70-73 Brix at $50-60^{\circ}C$). The ginsenoside contents of the red ginseng extract are shown as Rg1: 1.3 mg/g, Re: 1.3 mg/g, Rb1: 6.4 mg/g, Rc:2.5 mg/g, Rb2: 2.3 mg/g, and Rd: 0.9 mg/g, respectively. Arginine-fructose-glucose (AFG) is a specific amino-sugar that can be produced by chemical reaction of the process when the fresh ginseng is converted to red ginseng. The content of AFG is 1.0-1.5% in red ginseng. Acidic polysaccharide, which has been known as an immune activator, is at levels of 4.5-7.5% in red ginseng. Therefore, we recommended that the chemical profiles of Korean Red Ginseng made through the defined traditional method should be well preserved and it has had its own chemical characteristics since its traditional development.

Quality Characteristics of Various Beans in Distribution (시중에 유통되는 콩의 종류에 따른 품질 특성)

  • Moon, Hye-Kyung;Lee, Soo-Won;Moon, Jae-Nam;Kim, Dong-Hwan;Yoon, Won-Jung;Kim, Gwi-Young
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.2
    • /
    • pp.215-221
    • /
    • 2011
  • The goal of this study was to evaluate the quality characteristics of various beans in distribution. The quality characteristics investigated were proximate composition, color, free sugars, organic acids, amino acids, and minerals. Bean samples analyzed were white soybeans (Glycine max. (L.) Merrill), kidney beans (Phaseolus vulgaris var. humilis), black soybeans (Glycine max (L.) Merr.), black small soybeans (Rhynchosia nulubilis), sword beans (Canavalia gladiata), and green beans (Phaseolus vulgaris). The highest contents of crude fat and crude protein were 17.60${\pm}$0.14% for white soybeans, and 42.38${\pm}$0.15% for black soybeans, respectively. Higher color values compared to the other samples were $L^*$ (64.07${\pm}$0.97) for sword beans, $a^*$ (15.64${\pm}$0.48) for kidney beans, and $b^*$ (22.92${\pm}$0.09) for white soybeans. The highest contents of sucrose, oxalic acid, and malic acid in black small soybeans were 54.23 mg/g, 23.26 mg/100 g and 18.24 mg/100 g, respectively. Xylose, galactose, lactose, malonic acid, succinic acid, and lactic acid were not detected in the soybeans studied, whereas the glutamic acid content of soybeans ranged from 2.68 to 6.18 g/100 g. Levels of K and Mg contents in soybean were higher than those of the other minerals.

Effects of Ridge-up Bed Cultivation on the Fruit Quality of Satsuma Mandarin ('Miyagawa Wase') in a Plastic Film House (높은이랑재배에 의한 하우스 밀감의 품질향상)

  • Kim, Yong Ho;Kim, Chang Myung;Chung, Soon Kyung
    • Horticultural Science & Technology
    • /
    • v.18 no.5
    • /
    • pp.599-604
    • /
    • 2000
  • This experimemt was conducted to determine the effect of ridge-up bed with different height (0, 20, 40, 60 cm) on the fruit quality of 'Miyagawa Wase' satsuma mandarin cultivated in a plastic film house. Soil moisture was measured at the soil depths of 10, 30, and 60 cm for each height of ridge-up bed. The time required to reach the condition, -1.4 Mpa at 30 cm deep in soils, which are supposed to be the ideal soil moisture potential and soil depth for high quality satsuma mandarin production, was 100, 60, and 30 days for 20, 40, and 60 cm ridge-up bed, respectively, and more than 100 days for 0 cm. Peel chromaticity by 'a' value was increased as the ridge-up height went up, so that plants grown at the bed with 60 cm height had 11 degree higher value than those of plants grown at the bed with 0 cm height. The 'a/b' values also had a similiar trend as value 'a'. The reducing sugar level of the fruit juice, which was composed of glucose and fructose, was increased as the height of ridge went up, showing significant difference between the ridge heights. The sucrose level had the same trend as the reducing sugar level although the difference between the ridge heights were not significant. Generally, the soluble solid level is considered to be representing the fruit quality. It had 11.4, 12.1, 12.5, $12.8^{\circ}Brix$ for 0, 20, 40, and 60 cm ridge-ups, respectively, showing $1.4^{\circ}Brix$ difference between 0 and 60 cm ridges. Acidity basically showed the same result as that of the soluble solid level depending on the height of the ridges.

  • PDF

Isolation and Identification of Sphingomonas sanguis from Wild Pheasant and Production of Antagonistic Substance against Fowl Typhoid causing Salmonella gallinarum (야생꿩으로부터 가금티프스 억제균 Sphingomonas sanguis의 선발 및 항Salmonella 물질 생산 조건)

  • Ryu, Hyang-Son;Lee, Hyun-Seung;Lim, Jong-Hui;Kim, Jin-Rack;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.27-32
    • /
    • 2004
  • The antagonistic microorganisms against Salmonella gallinarum causing fowl typhoid were isolated from the gut of wild pheasant. The isolated L19, L33, L50 strains were showed the characteristics of isolated Gram negative, rods, catalase positive and oxidase negative. Finally, all strains were identified as Sphingomonas sanguis by $Biolog^{\circledR}$ system. The optimal carbon sources of Sphingomonas sanguis L19, L33 and L50 for the these growth ~ere glucose, saccharose, and fructose respectively. But the optimal carbon sources of S. sanguis L19,L33, L50 for the antagonistic material production were maltose, galactose, and saccharose respectively. The optimal nitrogen sources of S. sanguis L19, L33, L50 for the growth were yeast extract, yeast extract, and $NH_4H_2PO_4$ respectively. But the optimal nitrogen sources of S. sanguis L19, L33 and L50 for the antagonistic material production were $(NH_4)_2SO_4$ urea, $(NH_4)_2S_2O_8$ espectively.

Control Effects of Bemisia tabaci on Eggplant using Sticky Trap (가지에서 끈끈이트랩을 이용한 담배가루이 방제효과)

  • Kim, Ju;Choi, In-Young;Lee, Jang-Ho;Kim, Ju-Hee;Lim, Joo-Rag;Cheong, Seong-Soo;Kim, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.759-772
    • /
    • 2017
  • This experiment was conducted to develop control method for Bemisia tabaci (Gennadius) on eggplant using sticky trap method. According to the color of the sticky traps, the attractiveness of the B. tabaci was the highest in the yellow trap, followed by the green and orange. However, white, blue, red, black and green sticky traps have reduced attractiveness of B. tabaci. In order to improve the efficiency and attractiveness of sticky trap to the B. tabaci, the different kinds of sugars such as glucose, fructose, oligosaccharide, starch syrup and pure sugar were added to sticky traps respectively. However, the effect of B. tabaci attractiveness was low in starch syrup, pure sugar, and non-treated sticky traps. The attracting effect of B. tabaci was depending on the location of sticky trap. The highest value was obtained where sticky traps were located in the top of the eggplant, followed by 30 cm above from the top level. In addition, we were installed up to 40 sticky traps to determine the optimal amount of sticky traps to control B. tabaci in eggplant. When increasing the sticky traps, the number of adult and nymphs of B. tabaci were tended to be decreased significantly. This tendency was more effective in the latter stages than in the early stages. As the number of sticky traps increased, not only the growth rate of eggplant, leaf length, and stem diameter were to be better. But also number of fruits and product marketable value were increased at the early stage of growing as well. The study had proven that the sticky traps had an effect on increasing the yield at the early stage of growth, but the efficiency of controlling decreased due to the high density of B. tabaci of the next generation.

Pasting and Sensory Properties of Commercial Rice Products (유통중인 쌀의 호화 및 관능적 특성)

  • Park, Chan-Eun;Kim, Yun-Sook;Park, Dong-June;Park, Ki-Jai;Kim, Bum-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.401-406
    • /
    • 2011
  • This study was conducted to investigate the pasting and sensory properties of different commercial rice cultivars. All samples had adequate moisture content, and Gyeonggi Kosihikari had the lowest protein content (6.75%). Apparent quality of head rice ranged from 85.63 to 98.70% and amylose content was 21.51-26.54%. In a rapid visco analyzer examination, pasting temperature of Gyeonggi Kosihikari was the lowest (84.87). Breakdown of Gangwon Oade (43.64 RVU) was lower that of others, indicating the highest pasting stability. The setback of Jeonam Hitomebore was the lowest (81.56 RVU), suggesting slow deterioration. A texture analysis test showed that Gyeonggi Koshihikari had the lowest hardness and Chungnam Samgwang had the highest adhesiveness. Gyeonggi Koshihikari had the highest sensory scores for appearance, flavor, taste, texture and overall acceptability. These results indicate that Gyeonggi Koshihikari is the most adequate rice product among cultivars.

Free Sugar, Free Amino Acid, Non-Volatile Organic Acid and Volatile Compounds of Dongchimi added with Jasoja(Perillae semen) (자소자 첨가 동치미의 유리당, 유리아미노산, 비휘발성 유기산 및 휘발성 향기성분)

  • 황재희;장명숙
    • Korean journal of food and cookery science
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • All optional ingredient, Jasoja(Perillae semen) was adopted to improve Dongchimi in qualify during fermentation. Free sugar, free amino acid, non-volatile organic acid and volatile compounds were determined during fermentation at 10$^{\circ}C$ for 45 days. Free sugar content was slightly higher in 0.5%-Jasoja-treated samples than that of control. The contents of free amino acids in control Dongchimi (without jasoja) increased slowly during fermentation while those in 0.5 %-treated samples began to decrease after reaching their maximum value on the day 11 when Dongchimi became most acceptable. There were 6 non-volatile organic acids, such as lactic, fumaric, succinic, malic, tartaric, and citric acid. Among these, only lactic and succinic acid increased consistently with fermentation while others decreased. Volatile components in Dongchimi were mostly identified as sulfur-containing compounds by gas chromatography. Their numbers and % peak areas in the gas chromatogram decreased slightly with the increase in organic acids and alcohols during fermentation period. On the other hand, Dongchimi prepared with Jasoja maintained its contents of total acids as well as the level of sulfur-containing compounds.

Physicochemical Characterization and Changes in Nutritional Composition of Onions Depending on Type of Freezing Process (냉동 조건에 따른 양파의 이화학적 특성 및 영양성분 변화)

  • Jang, Min-Young;Jo, Yeon-Ji;Hwang, In-Guk;Yoo, Seon-Mi;Choi, Mi-Jung;Min, Sang-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1055-1061
    • /
    • 2014
  • Innovative freezing technology is currently applied to preserve foodstuffs for long-term storage. Generally, the quality of frozen food is closely related to the types of freezing and thawing processes. In this study, we characterized the physicochemical properties of onions depending on freezing rate. When onions were frozen at $-40^{\circ}C$, freezing rates were 0.1, 0.5, and $0.7^{\circ}C/min$ depending on air-blast quick freezer mode. Onions were thawed by microwave irradiation at 400 W. Hardness of onion dramatically decreased after freezing and thawing compared with blanched onion. However, the fastest freezing rate did not affect hardness. Thawing loss of onion decreased with a faster freezing rate. For morphological observation, onion frozen at a faster rate showed a smaller ice-crystal size. Vitamin C content decreased upon blanching or freezing, but there was no significant difference according to freezing rate. Although free sugar content also decreased upon blanching and freezing, its highest content was at $0.7^{\circ}C/min$ freezing. Among organic acids, malic acid content was highest at $0.7^{\circ}C/min$ freezing. Based on this study, it could be suggested that a faster freezing rate is effective to improve frozen food quality in accordance with preventing tissue damage or minimizing destruction of nutrients.

Study of optimization of natural nitrite source production from spinach (시금치 유래 천연 아질산염 생산의 최적화 연구)

  • Kim, Tae-Kyung;Seo, Dong-Ho;Sung, Jung-Min;Ku, Su-Kyung;Jeon, Ki-Hong;Kim, Young-Boong;Choi, Yun-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.459-461
    • /
    • 2017
  • This study investigated the screening and optimization of nitrite production from fermented spinach extract using different lactic acid bacteria, fermentation temperature, and time. Spinach extract was fermented using various lactic acid bacteria at 24, 30, and $36^{\circ}C$ for 6, 12, 18, 24, 36, 48, 72, and 96 h in the presence of different carbohydrates (glucose, sucrose, fructose, and lactose). Lactobacillus farciminis (KCTC 3618) produced the highest amount of nitrite using fermented spinach extract at $30^{\circ}C$ for 28 h compared to Staphylococcus carnosus, L. coryniformis (KCTC 3167), L. fructosus (KCTC 3544), L. reuteri (KCTC 3677), L. amylophilus (KCTC 3160), L. hilgardii (KCTC 3500), L. delbrueckii (KCTC 1058), L. fermentum (KCTC 3112), L. plantarum (KCTC 3104), and L. brevis (KCTC 3498). Comparison of the yield at different fermentation temperatures showed that the highest amount of nitrite was produced using fermented spinach extract at $30^{\circ}C$. Similarly, maximum nitrite yield was observed after 36 h fermentationin in the presence of sucrose. Therefore, maximum nitrite production was observed upon L. farciminis-mediated fermentation of spinach extractat $30^{\circ}C$ for 36 h in the presence of sucrose.